Skip to main content

Advertisement

Log in

Statistical and experimental studies of MoS2/g-C3N4/TiO2: a ternary Z-scheme hybrid composite

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A ternary photocatalyst, MoS2/g-C3N4/TiO2, was prepared using layered and exfoliated MoS2, g-C3N4, and TiO2 via hydrothermal and wet chemical method. It was characterized using various methods to evaluate the structural, morphological and optical properties. Successful incorporation of g-C3N4 and TiO2 into MoS2 was confirmed by X-ray photoelectron spectroscopy, and the formation of heterojunctions among MoS2, g-C3N4 and TiO2 particles was established by transmission electron microscopy. These hybrid composites exhibited excellent efficiency in the degradation of malachite green dye. The composite can be recycled four times without loss of photoactivity. The remarkable improvement in photocatalytic efficiency was because of the synergism among the three nanoparticles through the Z-scheme pathway which allows separation of electron–hole pairs and makes MoS2/g-C3N4/TiO2 an outstanding material in the fields of photocatalysis and water treatment. The optimized experimental conditions for the degradation of the dye were assessed by the Box–Behnken design of the response surface methodology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Shah J, Jan MR, Khitab F (2018) Sonophotocatalytic degradation of textile dyes over Cu impregnated ZnO catalyst in aqueous solution. Process Saf Environ Prot 116:149–158. https://doi.org/10.1016/j.psep.2018.01.008

    Article  CAS  Google Scholar 

  2. Wu M, Li L, Liu N et al (2018) Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Process Saf Environ Prot 118:40–58. https://doi.org/10.1016/j.psep.2018.06.025

    Article  CAS  Google Scholar 

  3. Di J, Xiong J, Li H, Liu Z (2018) Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv Mater 30:1–30. https://doi.org/10.1002/adma.201704548

    Article  CAS  Google Scholar 

  4. Sun X, Huang H, Zhao Q et al (2020) Thin-layered photocatalysts. Adv Funct Mater 30:1–43. https://doi.org/10.1002/adfm.201910005

    Article  CAS  Google Scholar 

  5. Zhang G, Liu H, Qu J, Li J (2016) Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ Sci 9:1190–1209. https://doi.org/10.1039/C5EE03761A

    Article  CAS  Google Scholar 

  6. Nagaraja CM, Kaur M, Dhingra S (2020) Enhanced visible-light-assisted photocatalytic hydrogen generation by MoS2/g-C3N4 nanocomposites. Int J Hydrogen Energy 45:8497–8506. https://doi.org/10.1016/j.ijhydene.2020.01.042

    Article  CAS  Google Scholar 

  7. Krishnan U, Kaur M, Singh K et al (2019) A synoptic review of MoS2: synthesis to applications. Superlattices Microstruct 128:274–297. https://doi.org/10.1016/j.spmi.2019.02.005

    Article  CAS  Google Scholar 

  8. Coleman JN, Lotya M, O’neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571. https://doi.org/10.1126/science.1194975

    Article  CAS  Google Scholar 

  9. Li X, Zhu H (2015) Two-dimensional MoS2: properties, preparation, and applications. J Materiomics 1:33–44. https://doi.org/10.1016/j.jmat.2015.03.003

    Article  Google Scholar 

  10. Cao Y, Gao Q, Li Q et al (2017) Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity. RSC Adv 7:40727–40733. https://doi.org/10.1039/c7ra06774g

    Article  CAS  Google Scholar 

  11. Liu M, Xue X, Yu S et al (2017) Improving photocatalytic performance from Bi2WO6@MoS2/graphene hybrids via gradual charge transferred pathway. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-03911-6

    Article  CAS  Google Scholar 

  12. Chen F, Yang H, Wang X, Yu H (2017) Facile synthesis and enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts. Cuihua Xuebao/Chinese J Catal 38:296–304. https://doi.org/10.1016/S1872-2067(16)62554-8

    Article  CAS  Google Scholar 

  13. Akhundi A, Habibi-Yangjeh A (2017) Graphitic carbon nitride nanosheets decorated with CuCr2O4 nanoparticles: novel photocatalysts with high performances in visible light degradation of water pollutants. J Colloid Interface Sci 504:697–710. https://doi.org/10.1016/j.jcis.2017.06.025

    Article  CAS  Google Scholar 

  14. Liu Y, Xu X, Zhang J et al (2018) Flower-like MoS2 on graphitic carbon nitride for enhanced photocatalytic and electrochemical hydrogen evolutions. Appl Catal B Environ 239:334–344. https://doi.org/10.1016/j.apcatb.2018.08.028

    Article  CAS  Google Scholar 

  15. Riaz S, Park S (2020) An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. J Ind Eng Chem 84:23–41. https://doi.org/10.1016/j.jiec.2019.12.021

    Article  CAS  Google Scholar 

  16. Arabatzis IM, Stergiopoulos T, Andreeva D et al (2003) Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127–135. https://doi.org/10.1016/S0021-9517(03)00241-0

    Article  CAS  Google Scholar 

  17. Tian H, Shen K, Hu X et al (2017) N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. J Alloys Compd 691:369–377. https://doi.org/10.1016/j.jallcom.2016.08.261

    Article  CAS  Google Scholar 

  18. Zhang Y, Yang HM, Park S (2018) Synthesis and characterization of nitrogen-doped TiO2 coatings on reduced graphene oxide for enhancing the visible light photocatalytic activity. Curr Appl Phys 18:163–169. https://doi.org/10.1016/j.cap.2017.12.001

    Article  Google Scholar 

  19. Mahalakshmi G, Rajeswari M, Ponnarasi P (2020) Synthesis of few-layer g-C3N4 nanosheets-coated MoS2/TiO2 heterojunction photocatalysts for photo-degradation of methyl orange (MO) and 4-nitrophenol (4-NP) pollutants. Inorg Chem Commun 120:108146–108157. https://doi.org/10.1016/j.inoche.2020.108146

    Article  CAS  Google Scholar 

  20. Zhou W, Yin Z, Du Y et al (2013) Synthesis of Few-Layer MoS2 Nanosheet-Coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities. Small 9:140–147. https://doi.org/10.1002/smll.201201161

    Article  CAS  Google Scholar 

  21. Li X, Xiong J, Xu Y et al (2019) Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions. Cuihua Xuebao/Chinese J Catal 40:424–433. https://doi.org/10.1016/S1872-2067(18)63183-3

    Article  CAS  Google Scholar 

  22. Zhang W, Xiao X, Li Y et al (2016) Liquid-exfoliation of layered MoS2 for enhancing photocatalytic activity of TiO2 /g-C3N4 photocatalyst and DFT study. Appl Surf Sci 389:496–506. https://doi.org/10.1016/j.apsusc.2016.07.154

    Article  CAS  Google Scholar 

  23. Zhi R, Qi Z, Chen W et al (2019) Growth of MoS2 nanosheets on TiO2/ g-C3N4 nanocomposites to enhance the visible-light photocatalytic ability. J Mater Sci Mater Electron 30:5393–5403. https://doi.org/10.1007/s10854-019-00832-0

    Article  CAS  Google Scholar 

  24. Pan J, Dong Z, Jiang Z et al (2019) MoS2 quantum dots modified black Ti3+–TiO2/g-C3N4 hollow nanosphere heterojunction toward photocatalytic hydrogen production enhancement. Sol RRL 3:1–11. https://doi.org/10.1002/solr.201900337

    Article  CAS  Google Scholar 

  25. Yang X, Huang H, Kubota M et al (2016) Synergetic effect of MoS2 and g-C3N4 as cocatalysts for enhanced photocatalytic H2 production activity of TiO2. Mater Res Bull 76:79–84. https://doi.org/10.1016/j.materresbull.2015.12.009

    Article  CAS  Google Scholar 

  26. Wang Q, Chen C, Zhu S et al (2019) Acetylene black quantum dots as a bridge for few-layer g-C3N4/MoS2 nanosheet architecture: 0D–2D heterojunction as an efficient visible-light-driven photocatalyst. Res Chem Intermed 45:4975–4993. https://doi.org/10.1007/s11164-019-03876-3

    Article  CAS  Google Scholar 

  27. Pant B, Park M, Park SJ (2019) MoS2 /CdS/TiO2 ternary composite incorporated into carbon nanofibers for the removal of organic pollutants from water. Inorg Chem Commun 102:113–119. https://doi.org/10.1016/j.inoche.2019.02.022

    Article  CAS  Google Scholar 

  28. Tian H, Liu M, Zheng W (2018) Constructing 2D graphitic carbon nitride nanosheets/layered MoS2/graphene ternary nanojunction with enhanced photocatalytic activity. Appl Catal B Environ 225:468–476. https://doi.org/10.1016/j.apcatb.2017.12.019

    Article  CAS  Google Scholar 

  29. Li X, Xiong J, Huang J et al (2019) Novel g-C3N4/h′ZnTiO3-a′TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity. J Alloys Compd 774:768–778. https://doi.org/10.1016/j.jallcom.2018.10.034

    Article  CAS  Google Scholar 

  30. Olivero RA, Nocerino JM, Deming SN (1995) Experimental design and optimization. Handb Environ Chem 2:73–122. https://doi.org/10.1007/978-3-540-49148-4-3

    Article  Google Scholar 

  31. Devi KRS, Mathew S, Rajan R et al (2019) Biogenic synthesis of g-C3N4/Bi2O3 heterojunction with enhanced photocatalytic activity and statistical optimization of reaction parameters. Appl Surf Sci 494:465–476. https://doi.org/10.1016/j.apsusc.2019.07.125

    Article  CAS  Google Scholar 

  32. Hou Y, Wen Z, Cui S et al (2013) Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv Mater 25:6291–6297. https://doi.org/10.1002/adma.201303116

    Article  CAS  Google Scholar 

  33. Jo WK, Adinaveen T, Vijaya JJ, Sagaya Selvam NC (2016) Synthesis of MoS2 nanosheet supported Z-scheme TiO2/g-C3N4 photocatalysts for the enhanced photocatalytic degradation of organic water pollutants. RSC Adv 6:10487–10497. https://doi.org/10.1039/c5ra24676h

    Article  CAS  Google Scholar 

  34. Jo WK, Lee JY, Selvam NCS (2016) Synthesis of MoS2 nanosheets loaded ZnO-g-C3N4 nanocomposites for enhanced photocatalytic applications. Chem Eng J 289:306–318. https://doi.org/10.1016/j.cej.2015.12.080

    Article  CAS  Google Scholar 

  35. Sunajadevi KR, Sugunan S (2004) Preparation and characterization of nanocrystalline transition metal-loaded sulfated titania through sol-gel method. Mater Lett 58:3290–3296. https://doi.org/10.1016/j.matlet.2004.06.019

    Article  CAS  Google Scholar 

  36. Lalithambika KC, Shanmugapriya K, Sriram S (2019) Photocatalytic activity of MoS2 nanoparticles: an experimental and DFT analysis. Appl Phys A Mater Sci Process 125:1–8. https://doi.org/10.1007/s00339-019-3120-9

    Article  CAS  Google Scholar 

  37. Devi KRS, Mathew S, Rajan R et al (2020) Synthesis and characterization of CeO2/Bi2O3/gC3N4 ternary Z-scheme nanocomposite. Int J Appl Ceram Technol 17:2346–2356. https://doi.org/10.1111/ijac.13578

    Article  CAS  Google Scholar 

  38. Yuan N, Zhang J, Zhang S et al (2020) What is the transfer mechanism of photoexcited charge carriers for g-C3N4/TiO2 heterojunction photocatalysts verification of the relative p-n junction theory. J Phys Chem C 124:8561–8575. https://doi.org/10.1021/acs.jpcc.0c00422

    Article  CAS  Google Scholar 

  39. Tang G, Sun J, Wei C et al (2012) Synthesis and characterization of flowerlike MoS2 nanostructures through CTAB-assisted hydrothermal process. Mater Lett 86:9–12. https://doi.org/10.1016/j.matlet.2012.07.014

    Article  CAS  Google Scholar 

  40. Xu J, Xu Y, Tang G et al (2019) The novel g-C3N4/MoS2/ZnS ternary nanocomposite with enhanced lithium storage properties. Appl Surf Sci 492:37–44. https://doi.org/10.1016/j.apsusc.2019.05.139

    Article  CAS  Google Scholar 

  41. Lu X, Jin Y, Zhang X et al (2016) Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance. Dalt Trans 45:15406–15414. https://doi.org/10.1039/c6dt02247b

    Article  CAS  Google Scholar 

  42. Yu W, Xu D, Peng T (2015) Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J Mater Chem A 3:19936–19947. https://doi.org/10.1039/c5ta05503b

    Article  CAS  Google Scholar 

  43. Ye L, Wang D, Chen S (2016) Fabrication and enhanced photoelectrochemical performance of MoS2/S-Doped g-C3N4 Heterojunction film. ACS Appl Mater Interfaces 8:5280–5289. https://doi.org/10.1021/acsami.5b11326

    Article  CAS  Google Scholar 

  44. Wang R, Gu L, Zhou J et al (2015) Quasi-polymeric metal-organic framework UiO-66/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation. Adv Mater Interfaces 2:1–5. https://doi.org/10.1002/admi.201500037

    Article  CAS  Google Scholar 

  45. Jo WK, Selvam NCS (2015) Synthesis of GO supported Fe2O3-TiO2 nanocomposites for enhanced visible-light photocatalytic applications. Dalt Trans 44:16024–16035. https://doi.org/10.1039/c5dt02983j

    Article  CAS  Google Scholar 

  46. Papailias I, Todorova N, Giannakopoulou T et al (2018) Chemical vs thermal exfoliation of g-C3N4 for NOx removal under visible light irradiation. Appl Catal B Environ 239:16–26. https://doi.org/10.1016/j.apcatb.2018.07.078

    Article  CAS  Google Scholar 

  47. Ji R, Zhu Z, Ma W et al (2020) A heterojunction photocatalyst constructed by the modification of 2D-CeO2 on 2D-MoS2 nanosheets with enhanced degrading activity. Catal Sci Technol 10:788–800. https://doi.org/10.1039/c9cy02238d

    Article  CAS  Google Scholar 

  48. Yuan Y, Zhang L, Xing J et al (2015) High-yield synthesis and optical properties of g-C3N4. Nanoscale 7:12343–12350. https://doi.org/10.1039/c5nr02905h

    Article  CAS  Google Scholar 

  49. Beyhaqi A, Zeng Q, Chang S et al (2020) Construction of g-C3N4/WO3/MoS2 ternary nanocomposite with enhanced charge separation and collection for efficient wastewater treatment under visible light. Chemosphere 247:125784–125792. https://doi.org/10.1016/j.chemosphere.2019.125784

    Article  CAS  Google Scholar 

  50. Sunaja Devi KR, Mohan MK, Pinheiro D et al (2019) Investigation on the phase transformation and lattice parameters of Sn2+, Cu2+, La 3+ and Ce4+ ions doped titania: characterization and solar light activity study. Optik (Stuttg) 183:496–507. https://doi.org/10.1016/j.ijleo.2019.02.100

    Article  CAS  Google Scholar 

  51. Drmosh QA, Hezam A, Hendi AHY et al (2020) Ternary Bi2S3/MoS2/TiO2 with double Z-scheme configuration as high performance photocatalyst. Appl Surf Sci 499:143938–143947. https://doi.org/10.1016/j.apsusc.2019.143938

    Article  CAS  Google Scholar 

  52. de Moraes NP, Silva FN, da Silva MLCP et al (2018) Methylene blue photodegradation employing hexagonal prism-shaped niobium oxide as heterogeneous catalyst: effect of catalyst dosage, dye concentration, and radiation source. Mater Chem Phys 214:95–106. https://doi.org/10.1016/j.matchemphys.2018.04.063

    Article  CAS  Google Scholar 

  53. Jose A, Sunaja Devi KR, Pinheiro D, Lakshmi Narayana S (2018) Electrochemical synthesis, photodegradation and antibacterial properties of PEG capped zinc oxide nanoparticles. J Photochem Photobiol B Biol 187:25–34. https://doi.org/10.1016/j.jphotobiol.2018.07.022

    Article  CAS  Google Scholar 

  54. Lee Y-C, Kim J-Y, Shin H-J (2013) Removal of malachite green (MG) from aqueous solutions by adsorption, precipitation, and alkaline fading using talc. Sep Sci Technol 48:1093–1101. https://doi.org/10.1080/01496395.2012.723100

    Article  CAS  Google Scholar 

  55. Wang L, Li Z, Chen J et al (2019) Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite. Environ Pollut 249:801–811. https://doi.org/10.1016/j.envpol.2019.03.071

    Article  CAS  Google Scholar 

  56. Karthik K, Devi KRS, Pinheiro D, Sugunan S (2019) Photocatalytic activity of bismuth silicate heterostructures synthesized via surfactant mediated sol-gel method. Mater Sci Semicond Process 102:104589–104597. https://doi.org/10.1016/j.mssp.2019.104589

    Article  CAS  Google Scholar 

  57. Enko B, Borisov SM, Regensburger J et al (2013) Singlet oxygen-induced photodegradation of the polymers and dyes in optical sensing materials and the effect of stabilizers on these processes. J Phys Chem A 117:8873–8882. https://doi.org/10.1021/jp4046462

    Article  CAS  Google Scholar 

  58. Mousavi M, Habibi-yangjeh A, Abitorabi M (2016) Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible light irradiation. J Colloid Interface Sci 480:218–231. https://doi.org/10.1016/j.jcis.2016.07.021

    Article  CAS  Google Scholar 

  59. Kang J, Jin C, Li Z et al (2020) Dual Z-scheme MoS2/g-C3N4/Bi24O31Cl10 ternary heterojunction photocatalysts for enhanced visible-light photodegradation of antibiotic. J Alloys Compd 385:153975–153986. https://doi.org/10.1016/j.jallcom.2020.153975

    Article  CAS  Google Scholar 

  60. Jahurul Islam M, Amaranatha Reddy D, Han NS et al (2016) An oxygen-vacancy rich 3D novel hierarchical MoS2/BiOI/AgI ternary nanocomposite: enhanced photocatalytic activity through photogenerated electron shuttling in a Z-scheme manner. Phys Chem Chem Phys 18:24984–24993. https://doi.org/10.1039/c6cp02246d

    Article  CAS  Google Scholar 

  61. Jiang AL, Yuan X, Zeng G (2018) In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl Catal B Environ 227:376–385. https://doi.org/10.1016/j.apcatb.2018.01.042

    Article  CAS  Google Scholar 

  62. Hasija V, Raizada P, Sudhaik A et al (2020) Fabrication of Ag/AgI/WO3 heterojunction anchored P and S co-doped graphitic carbon nitride as a dual Z scheme photocatalyst for efficient dye degradation. Solid State Sci 100:106095–106105. https://doi.org/10.1016/j.solidstatesciences.2019.106095

    Article  CAS  Google Scholar 

  63. Lin Y, Wu S, Li X et al (2018) Microstructure and performance of Z-scheme photocatalyst of silver phosphate modified by MWCNTs and Cr-doped SrTiO3 for malachite green degradation. Appl Catal B Environ 227:557–570. https://doi.org/10.1016/j.apcatb.2018.01.054

    Article  CAS  Google Scholar 

  64. Liu J, Liu Z, Piao C et al (2020) Construction of fixed Z-scheme Ag|AgBr/Ag/TiO2 photocatalyst composite film for malachite green degradation with simultaneous hydrogen production. J Power Sources 469:228430–228442. https://doi.org/10.1016/j.jpowsour.2020.228430

    Article  CAS  Google Scholar 

  65. Jia J, Du X, Zhang Q et al (2019) Z-scheme MgFe2O4/Bi2MoO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity for malachite green removal. Appl Surf Sci 492:527–539. https://doi.org/10.1016/j.apsusc.2019.06.258

    Article  CAS  Google Scholar 

  66. Cui H, Li B, Zhang Y et al (2018) ScienceDirect Constructing Z-scheme based CoWO4/CdS photocatalysts with enhanced dye degradation and H2 generation performance. Int J Hydrogen Energy 43:18242–18252. https://doi.org/10.1016/j.ijhydene.2018.08.050

    Article  CAS  Google Scholar 

  67. Kiranşan M, Soltani RDC, Hassani A et al (2014) Preparation of cetyltrimethylammonium bromide modified montmorillonite nanomaterial for adsorption of a textile dye. J Taiwan Inst Chem Eng 45:2565–2577. https://doi.org/10.1016/j.jtice.2014.06.007

    Article  CAS  Google Scholar 

  68. Khataee A, Sheydaei M, Hassani A et al (2015) Sonocatalytic removal of an organic dye using TiO2/ Montmorillonite nanocomposite. Ultrason Sonochem 22:404–411. https://doi.org/10.1016/j.ultsonch.2014.07.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bengaluru, funded by the Ministry of Electronics and Information Technology (MeitY), Govt. of India, for allowing part of this research (characterizations) to be conducted here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Sunaja Devi.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaleel, U.C.J.R., Devi, K.R.S., Madhushree, R. et al. Statistical and experimental studies of MoS2/g-C3N4/TiO2: a ternary Z-scheme hybrid composite. J Mater Sci 56, 6922–6944 (2021). https://doi.org/10.1007/s10853-020-05695-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05695-z

Navigation