Skip to main content

Advertisement

Log in

Chipping: a pervasive presence in nature, science and technology

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chipping is an all too common occurrence in nature, ubiquitous in various aspects of home and outdoor experience. While it can have deleterious consequences, it can also be harnessed to advantage in such diverse areas as manufacturing, health care, biological evolution and anthropological tool reproduction. This article outlines the fundamental science of chipping, with a broad selection of illustrative case studies. While the focus will be on those solids most susceptible to chip fracture, namely those of an intrinsically brittle nature, the generality of the underlying mechanics will be a central theme.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Doyle AC (1927) The problem of Thor Bridge. In: The case-book of Sherlock Holmes. John Murray, London

  2. Lawn BR, Borrero-Lopez O, Huang H, Zhang Y (2021) Mechanics of machining and wear in hard and brittle materials. J Amer Ceram Soc 104:5–22. https://doi.org/10.1111/jace.17502

    Article  CAS  Google Scholar 

  3. Frank FC, Lawn BR (1967) On the theory of Hertzian fracture. Proc Roy Soc Lond A299(1458):291–306

    Google Scholar 

  4. Lawn BR, Wilshaw TR (1975) Indentation fracture: principles and applications. J Mater Sci 10(6):1049–1081. https://doi.org/10.1007/BF00823224

    Article  Google Scholar 

  5. Cook RF, Pharr GM (1990) Direct observation and analysis of indentation cracking in glasses and ceramics. J Amer Ceram Soc 73(4):787–817.https://doi.org/10.1111/j.1151-2916.1990.tb05119.x

    Article  CAS  Google Scholar 

  6. Lawn BR (1998) Indentation of ceramics with spheres: a century after Hertz. J Amer Ceram Soc 81(8):1977–1994

    Article  CAS  Google Scholar 

  7. Lawn BR, Cook RF (2012) Probing material properties with sharp indenters: a retrospective. J Mater Sci 47(1):1–22.https://doi.org/10.1007/s10853-011-5865-1

    Article  CAS  Google Scholar 

  8. Marshall DB, Lawn BR, Evans AG (1982) Elastic/plastic indentation damage in ceramics: the lateral crack system. J Amer Ceram Soc 65(11):561–566

    Article  CAS  Google Scholar 

  9. Marshall DB, Lawn BR (1979) Residual stress effects in sharp-contact cracking: I Indentation fracture mechanics. J Mater Sci 14(8):2001–2012. https://doi.org/10.1007/BF00551043

    Article  Google Scholar 

  10. Cook RF, Roach DH (1986) The effect of lateral crack growth on the strength of contact flaws. J Mater Res 1(4):589–599

    Article  CAS  Google Scholar 

  11. Chai H, Lawn BR (2007) A universal relation for edge chipping from sharp contacts in brittle materials: a simple means of toughness evaluation. Acta Mater 55:2555–2561

    Article  CAS  Google Scholar 

  12. Chui WC, Thouless MD, Endres WJ (1998) An analysis of chipping in brittle materials. Int J Fract 90(4):287–298

    Article  Google Scholar 

  13. Chai H, Lawn BR (2007) Edge chipping in brittle materials: effect of side-wall inclination and loading angle. Int J Fract 145:159–165

    Article  CAS  Google Scholar 

  14. Chen JB, Fang QH, Li P (2015) Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding. Int J Mach Tools Manuf 91:12–23

    Article  Google Scholar 

  15. Padture NP, Lawn BR (1994) Toughness properties of a silicon carbide with an in-situ-induced heterogeneous grain structure. J Amer Ceram Soc 77(10):2518–2522.https://doi.org/10.5281/zenodo.1332768

    Article  CAS  Google Scholar 

  16. Wiederhorn SM, Hockey BJ (1983) Effect of material parameters on the erosion resistance of brittle materials. J Mater Sci 18(3):766–780. https://doi.org/10.1007/BF00745575

    Article  CAS  Google Scholar 

  17. Marshall DB, Evans AG, Yakub BTK, Tien JW, Kino GS (1983) The nature of machining damage in brittle materials. Proc Roy Soc Lond A385:461–475

    Google Scholar 

  18. Borrero-Lopez O, Guiberteau F, Zhang Y, Lawn BR (2019) Wear of ceramic-based dental materials. J Mech Behav Biomed Mat 92:144–151

    Article  CAS  Google Scholar 

  19. Lawn BR, Marshall DB (1979) Hardness, toughness, and brittleness: an indentation analysis. J Amer Ceram Soc 62(7–8):347–350

    Article  CAS  Google Scholar 

  20. Huang H, Lawn BR, Cook RF, Marshall DB (2020) Critique of materials-based models of ductile machining in brittle solids. J Amer Ceram Soc 103:6096–6100

    Article  CAS  Google Scholar 

  21. Huang H, Li X, Mu D, Lawn BR (2021) Science and art of ductile grinding of brittle materials. Int. J. Mach, Tools Eng (in press)

    Google Scholar 

  22. Liu H, Xie W, Sun Y, Zhu X, Wang M (2018) Investigations on brittle-ductile cutting transition and crack formation in diamond cutting of mono-crystalline silicon. Int J Adv Manuf Tech 95(1–4):317–326

    Article  Google Scholar 

  23. Mylvaganam KM, Zhang LC (2009) Nanoscratching-induced phase tansformation of monocrystalline silicon–the depth-of-cut effect. Adv Mater Res 76–78:387–391

    Article  Google Scholar 

  24. Rekow D, Thompson VP (2007) Engineering long-term clinical success of advanced ceramic prostheses. J Mat Sci: Mat Med 18:47–56

    CAS  Google Scholar 

  25. Rekow ED, Silva NRFA, Coehlo PG, Zhang Y, Guess P, Thompson VP (2011) Performance of dental ceramics: challenges for improvements. J Dent Res 90(8):937–952

    Article  CAS  Google Scholar 

  26. Zhang Y, Sailer I, Lawn BR (2013) Fatigue of dental ceramics. J Dentistry 41:1135

    Article  CAS  Google Scholar 

  27. Zhang Y, Chai H, Lee JJ-W, Lawn BR (2012) Chipping resistance of graded zirconia ceramics for dental crowns. J Dent Res 91(3):311–315

    Article  CAS  Google Scholar 

  28. Zhang Y, Lee JJ-W, Srikanth R, Lawn BR (2013) Edge chipping and flexural resistance of monolithic ceramics. Dent Mater 29(12):1201–1208

    Article  CAS  Google Scholar 

  29. Chai H, Lee JJ-W, Lawn BR (2011) On the chipping and splitting of teeth. J Mech Behav Biomed Mat 4:315–321

    Article  Google Scholar 

  30. Zhang Y, Lawn BR (2018) Novel zirconia materials in dentistry. J Dent Res 97(2):140–147

    Article  CAS  Google Scholar 

  31. Constantino PJ, Lee JJ-W, Chai H, Zipfel B, Ziscovici C, Lawn BR, Lucas PW (2010) Tooth chipping can reveal bite forces and diets of fossil hominins. Biol Lett 6:826–829

    Article  Google Scholar 

  32. Barani A, Keown AJ, Bush MB, Lee JJ-W, Chai H, Lawn BR (2011) Mechanics of longitudinal cracks in tooth enamel. Acta Biomater 7:2285–2292

    Article  CAS  Google Scholar 

  33. Lawn BR, Bush MB, Barani A, Constantino P, Wroe S (2013) Inferring biological evolution from fracture patterns in teeth. J Theoret Biol 338:59–65

    Article  Google Scholar 

  34. Demes B, Creel N (1988) Bite force, diet and cranial morphology of fossil hominids. J Human Evol 17:657–670

    Article  Google Scholar 

  35. Thomason JJ (1991) Cranial strength in relation to estimated biting forces in some mammals. Canad J Zool 69(9):2326–2333

    Article  Google Scholar 

  36. Wroe S, McHenry CR, Thomason J (2005) Bite club: comparative bite force in big biting mammals and the prediction of predatory behavior in fossil taxa. Proc Roy Soc Lond B272(1563):619–625

    Google Scholar 

  37. Wroe S, Ferrara TL, McHenry CR, Curnoe D, Chamoli U (2010) The craniomandibular mechanics of being human. Proc Roy Soc Lond B 277:3579–3586

    Google Scholar 

  38. Whittaker JC (1994) Flintknapping: marking and understanding stone tools. University of Texas Press, Austin

    Google Scholar 

  39. Waldorf DC (1994) The art of flint knapping. Mound Builder Books, Branson MO, USA

    Google Scholar 

  40. Stout D (2011) Stone toolmaking and the evolution of human culture and cognition. Phil Trans Roy Soc Lond B366:1050–1059

    Article  Google Scholar 

  41. Speth JD (1972) Mechanical basis of percussion flaking. Amer Antiquity 37(1):34–60

    Article  Google Scholar 

  42. Cotterell B, Kaminga J, Dickson FP (1985) The essential mechanics of conchoidal flaking. Int J Fract 29:205–221

    Article  Google Scholar 

  43. Cotterell B, Kaminga J (1987) The formation of flakes. Amer. Antiquity 52(4):675–708

    Article  Google Scholar 

  44. Chai H (2017) Modelling edge chipping in flint knapping, cutting tools and sharp teeth using a trapezoidal prism structure. Int J Solids Struct 104–5:1–7

    Article  Google Scholar 

Download references

Acknowledgements

Comments by David Marshall, Oscar Borreo-Lopez, Paul Constantino, Yu Zhang, Robert Cook and Herzl Chai are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Lawn.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawn, B.R. Chipping: a pervasive presence in nature, science and technology. J Mater Sci 56, 8396–8405 (2021). https://doi.org/10.1007/s10853-020-05662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05662-8

Navigation