Skip to main content
Log in

Rapid synthesis and growth process deconvolution of Au nanoflowers with ultrahigh catalytic activity based on microfluidics

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dynamic growth process of gold nanoflowers (AuNFs), which have ample distinct optical properties important for chemical and biosensing as well as high catalytic efficiency, is essential for the controlled synthesis of AuNFs. Here, a simple and rapid microfluidic strategy is developed not only to synthesize AuNFs of various sizes but also to investigate the growth process of AuNFs, which surprisingly allows for the observation of previously unidentifiable processes. These AuNFs are quasi-spherical with many branches in various orientations and poly-crystalline with different crystal faces. The detailed process about the aggregation of primary nanoparticles in the growth process of AuNFs is deconvoluted into a dynamic self-limiting growth process, which is controlled by electrostatic repulsion and van der Waals attraction between building blocks. Monte Carlo simulation confirms the self-limiting growth process. Meanwhile, the as-prepared AuNFs show a high catalytic activity for the reduction of 4-nitrophenol (4-NP) by NaBH4 while not necessitating post-washing treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Li N, Zhao P, Astruc D (2014) Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed 53(7):1756–1789. https://doi.org/10.1002/anie.201300441

    Article  CAS  Google Scholar 

  2. Hong X, Tan C, Chen J, Xu Z, Zhang H (2015) Synthesis, properties and applications of one-and two-dimensional gold nanostructures. Nano Res 8(1):40–55. https://doi.org/10.1007/s12274-014-0636-3

    Article  CAS  Google Scholar 

  3. Huang J, Guo M, Ke H, Zong C, Ren B, Liu G, Shen H, Ma Y, Wang X, Zhang H (2015) Rational design and synthesis of γFe2O3@ Au magnetic gold nanoflowers for efficient cancer theranostics. Adv Mater 27(34):5049–5056. https://doi.org/10.1002/adma.201501942

    Article  CAS  Google Scholar 

  4. Senapati D, Dasary SSR, Singh AK, Senapati T, Yu H, Ray PC (2011) A label-free gold-nanoparticle-based SERS assay for direct cyanide detection at the parts-per-trillion level. Chem Eur J 17(30):8445–8451. https://doi.org/10.1002/chem.201100617

    Article  CAS  Google Scholar 

  5. Reguera J, Langer J, Jiménez de Aberasturi D, Liz-Marzán LM (2017) Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem Soc Rev 46(13):3866–3885. https://doi.org/10.1039/C7CS00158D

    Article  CAS  Google Scholar 

  6. Zhu Z, Meng H, Liu W, Liu X, Gong J, Qiu X, Jiang L, Wang D, Tang Z (2011) Superstructures and SERS properties of gold nanocrystals with different shapes. Angew Chem Int Ed 50(7):1593–1596. https://doi.org/10.1002/anie.201005493

    Article  CAS  Google Scholar 

  7. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179. https://doi.org/10.1126/science.1077229

    Article  CAS  Google Scholar 

  8. Song JH, Kim F, Kim D, Yang P (2005) Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods. Chem Eur J 11(3):910–916. https://doi.org/10.1002/chem.200400805

    Article  CAS  Google Scholar 

  9. Han B, Gao X, Shi L, Zheng Y, Hou K, Lv J, Guo J, Zhang W, Tang Z (2017) Geometry-modulated magnetoplasmonic optical activity of Au nanorod-based nanostructures. Nano Lett 17(10):6083–6089. https://doi.org/10.1021/acs.nanolett.7b02583

    Article  CAS  Google Scholar 

  10. Xu X, Jia J, Yang X, Dong S (2010) A templateless, surfactantless, simple electrochemical route to a dendritic gold nanostructure and its application to oxygen reduction. Langmuir 26(10):7627–7631. https://doi.org/10.1021/la904245q

    Article  CAS  Google Scholar 

  11. Kumar PS, Pastoriza-Santos I, Rodriguez-Gonzalez B, De Abajo FJG, Liz-Marzán LM (2007) High-yield synthesis and optical response of gold nanostars. Nanotechnol 19(1):015606. https://doi.org/10.1088/0957-4484/19/01/015606

    Article  CAS  Google Scholar 

  12. Casu A, Cabrini E, Donà A, Falqui A, Diaz-Fernandez Y, Milanese C, Taglietti A, Pallavicini P (2012) Controlled synthesis of gold nanostars by using a zwitterionic surfactant. Chem Eur J 18(30):9381–9390. https://doi.org/10.1002/chem.201201024

    Article  CAS  Google Scholar 

  13. Xie J, Zhang Q, Lee JY, Wang DI (2008) The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano 2(12):2473–2480. https://doi.org/10.1021/nn800442q

    Article  CAS  Google Scholar 

  14. Bakr OM, Wunsch BH, Stellacci F (2006) High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem Mater 18(14):3297–3301. https://doi.org/10.1021/cm060681i

    Article  CAS  Google Scholar 

  15. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7(3):729–732. https://doi.org/10.1021/nl062969c

    Article  CAS  Google Scholar 

  16. Piotto V, Litti L, Meneghetti M (2020) Synthesis and shape manipulation of anisotropic gold nanoparticles by laser ablation in solution. J Phys Chem C 124(8):4820–4826. https://doi.org/10.1021/acs.jpcc.9b10793

    Article  CAS  Google Scholar 

  17. Schütz M, Steinigeweg D, Salehi M, Kömpe K, Schlücker S (2011) Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Comm 47(14):4216–4218. https://doi.org/10.1039/c0cc05229a

    Article  CAS  Google Scholar 

  18. Ma W, Sun M, Xu L, Wang L, Kuang H, Xu C (2013) A SERS active gold nanostar dimer for mercury ion detection. Chem Comm 49(44):4989–4991. https://doi.org/10.1039/C3CC39087J

    Article  CAS  Google Scholar 

  19. Kariuki VM, Hoffmeier JC, Yazgan I, Sadik OA (2017) Seedless synthesis and SERS characterization of multi-branched gold nanoflowers using water soluble polymers. Nanoscale 9(24):8330–8340. https://doi.org/10.1039/c7nr01233k

    Article  CAS  Google Scholar 

  20. Joseph S, Mathew B (2015) Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochim Acta Part A 136:1371–1379. https://doi.org/10.1016/j.saa.2014.10.023

    Article  CAS  Google Scholar 

  21. Jia H, Chang G, Lei M, He H, Liu X, Shu H, Xia T, Su J, He Y (2016) Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation. Appl Surf Sci 384:58–64. https://doi.org/10.1016/j.apsusc.2016.05.020

    Article  CAS  Google Scholar 

  22. Ansar SM, Kitchens CL (2016) Impact of gold nanoparticle stabilizing ligands on the colloidal catalytic reduction of 4-nitrophenol. ACS Catalysis 6(8):5553–5560. https://doi.org/10.1021/acscatal.6b00635

    Article  CAS  Google Scholar 

  23. Yi S, Sun L, Lenaghan SC, Wang Y, Chong X, Zhang Z, Zhang M (2013) One-step synthesis of dendritic gold nanoflowers with high surface-enhanced Raman scattering (SERS) properties. RSC Adv 3(26):10139–10144. https://doi.org/10.1039/C3RA40716K

    Article  CAS  Google Scholar 

  24. Song CY, Yang BY, Chen WQ, Dou YX, Yang YJ, Zhou N, Wang LH (2016) Gold nanoflowers with tunable sheet-like petals: facile synthesis, SERS performances and cell imaging. J Mater Chem B 4(44):7112–7118. https://doi.org/10.1039/C6TB01046F

    Article  CAS  Google Scholar 

  25. Borah D, Hazarika M, Tailor P, Silva AR, Chetia B, Singaravelu G, Das P (2018) Starch-templated bio-synthesis of gold nanoflowers for in vitro antimicrobial and anticancer activities. Appl Nanosci 8(3):241–253. https://doi.org/10.1007/s13204-018-0793-x

    Article  CAS  Google Scholar 

  26. Yang D-P, Liu X, Teng CP, Owh C, Win KY, Lin M, Loh XJ, Wu Y-L, Li Z, Ye E (2017) Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy. Nanoscale 9(41):15753–15759. https://doi.org/10.1039/C7NR06286A

    Article  CAS  Google Scholar 

  27. Wang L, Wei G, Guo C, Sun L, Sun Y, Song Y, Yang T, Li Z (2008) Photochemical synthesis and self-assembly of gold nanoparticles. Colloids Surf A 312(2):148–153. https://doi.org/10.1016/j.colsurfa.2007.06.043

    Article  CAS  Google Scholar 

  28. Liebig F, Henning R, Sarhan RM, Prietzel C, Bargheer M, Koetz J (2018) A new route to gold nanoflowers. Nanotechnol 29(18):185603. https://doi.org/10.1088/1361-6528/aaaffd

    Article  CAS  Google Scholar 

  29. Wu H-L, Chen C-H, Huang MH (2009) Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chem Mater 21(1):110–114. https://doi.org/10.1021/cm802257e

    Article  CAS  Google Scholar 

  30. Calamak S, Ulubayram K (2019) Controlled synthesis of multi-branched gold nanodendrites by dynamic microfluidic flow system. J Mater Sci 54(10):7541–7552. https://doi.org/10.1007/s10853-019-03403-0

    Article  CAS  Google Scholar 

  31. Abalde-Cela S, Taladriz-Blanco P, de Oliveira MG, Abell C (2018) Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles. Sci Rep 8:2440. https://doi.org/10.1038/s41598-018-20754-x

    Article  CAS  Google Scholar 

  32. Silvestri A, Lay L, Psaro R, Polito L, Evangelisti C (2017) Fluidic manufacture of star-shaped gold nanoparticles. Chem Eur J 23(41):9732–9735. https://doi.org/10.1002/chem.201701617

    Article  CAS  Google Scholar 

  33. Xie J, Lee JY, Wang DI (2007) Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution. Chem Mater 19(11):2823–2830. https://doi.org/10.1021/cm0700100

    Article  CAS  Google Scholar 

  34. Lignos I, Maceiczyk R, deMello AJ (2017) Microfluidic technology: uncovering the mechanisms of nanocrystal nucleation and growth. Acc Chem Res 50(5):1248–1257. https://doi.org/10.1021/acs.accounts.7b00088

    Article  CAS  Google Scholar 

  35. Dong Z, Xu H, Bai Z, Wang H, Zhang L, Luo X, Tang Z, Luque R, Xuan J (2015) Microfluidic synthesis of high-performance monodispersed chitosan microparticles for methyl orange adsorption. RSC Adv 5(95):78352–78360. https://doi.org/10.1039/C5RA17226H

    Article  CAS  Google Scholar 

  36. Wang W, Yang X, Cui H (2008) Growth mechanism of flowerlike gold nanostructures: surface plasmon resonance (SPR) and resonance Rayleigh scattering (RRS) approaches to growth monitoring. J Phys Chem C 112(42):16348–16353. https://doi.org/10.1021/jp804970x

    Article  CAS  Google Scholar 

  37. Ren Y, Xu C, Wu M, Niu M, Fang Y (2011) Controlled synthesis of gold nanoflowers assisted by poly (vinyl pyrrolidone)–sodium dodecyl sulfate aggregations. Colloids Surf A 380(1–3):222–228. https://doi.org/10.1016/j.colsurfa.2011.02.029

    Article  CAS  Google Scholar 

  38. Ye S, Brown AP, Stammers AC, Thomson NH, Wen J, Roach L, Bushby RJ, Coletta PL, Critchley K, Connell SD, Markham AF, Brydson R, Evans SD (2019) Sub-nanometer thick gold nanosheets as highly efficient catalysts. Adv Sci 6(21):1900911. https://doi.org/10.1002/advs.201900911

    Article  CAS  Google Scholar 

  39. Fu Q, Sheng Y, Tang H, Zhu Z, Ruan M, Xu W, Zhu Y, Tang Z (2015) Growth mechanism deconvolution of self-limiting supraparticles based on microfluidic system. ACS Nano 9(1):172–179. https://doi.org/10.1021/nn5027998

    Article  CAS  Google Scholar 

  40. Xia Y, Nguyen TD, Yang M, Lee B, Santos A, Podsiadlo P, Tang Z, Glotzer SC, Kotov NA (2011) Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat Nanotechnol 6(9):580–587. https://doi.org/10.1038/nnano.2011.121

    Article  CAS  Google Scholar 

  41. Dash SS, Bag BG (2014) Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity. Appl Nanosci 4(1):55–59. https://doi.org/10.1007/s13204-012-0179-4

    Article  CAS  Google Scholar 

  42. Aromal SA, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta Part A 97:1–5. https://doi.org/10.1016/j.saa.2012.05.083

    Article  CAS  Google Scholar 

  43. Wang K, Chen R, Zhu X, Liao Q, Ye D, Chen G, Liu M (2020) Simple method for directly synthesizing Ag nanoparticles with silver ammonia and polydopamine in a microreactor toward the conversion of 4-NP to 4-AP. Ind Eng Chem Res 59(37):16205–16216. https://doi.org/10.1021/acs.iecr.0c03117

    Article  CAS  Google Scholar 

  44. Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord Chem Rev 287:114–136. https://doi.org/10.1016/j.ccr.2015.01.002

    Article  CAS  Google Scholar 

  45. Eo M, Baek J, Song HD, Lee S, Yi J (2013) Quantification of electron transfer rates of different facets on single gold nanoparticles during catalytic reactions. Chem Commun 49(45):5204–5206. https://doi.org/10.1039/C3CC41627E

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the National Natural Science Foundation of China (21950410520) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuping Sheng or Stephan Handschuh-Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4155kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Fu, C., Teng, L. et al. Rapid synthesis and growth process deconvolution of Au nanoflowers with ultrahigh catalytic activity based on microfluidics. J Mater Sci 56, 6315–6326 (2021). https://doi.org/10.1007/s10853-020-05641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05641-z

Navigation