Skip to main content
Log in

One-pot synthesis of uniform Cu nanowires and their enhanced non-enzymatic glucose sensor performance

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High cost and narrow detection range of electrocatalyst are the two major challenges for the commercialization of non-enzymatic sensor. In this work, we synthesized Cu nanowires (Cu NWs) with unique morphology and high yields were by a one-pot hydrothermal method. Different from conventional amine-assisted method, we restrained the nano-particles (NPs) formation by introducing the HCl solution. The as-prepared Cu NWs were further utilized in a non-enzymatic glucose sensor. Benefiting from the path directing effects and abundant (100) facets, the sensor constructed by Cu NWs exhibited a superior sensitivity (1001.8 µA/mM cm2) than that by analogous Cu NWs containing Cu NPs (338.3 µA/mM cm2). And the enhanced factor could reach 2.96. Moreover, the obtained Cu NWs show a wide linear response to the glucose. And the detection range could up to 25 mM, with a detection limit of 2.3 μM. This work demonstrated the preferable sensor performance of Cu NWs with uniform morphology, which opens up new avenues for utilizing 1D non-noble metals nanostructures in other sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186. https://doi.org/10.1007/s00604-012-0923-1

    Article  CAS  Google Scholar 

  2. Adeel M, Rahman MM, Caligiuri I, Canzonieri V, Rizzolio F, Daniele S (2020) Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2020.112331

    Article  Google Scholar 

  3. Jernelv IL, Milenko K, Fuglerud SS, Hjelme DR, Ellingsen R, Aksnes A (2018) A review of optical methods for continuous glucose monitoring. Appl Spectrosc Rev 54:543–572. https://doi.org/10.1080/05704928.2018.1486324

    Article  Google Scholar 

  4. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505. https://doi.org/10.1021/cr068069y

    Article  CAS  Google Scholar 

  5. Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301

    CAS  Google Scholar 

  6. Hsieh Y-S, Wang P-W, Li C-Y, Hsieh S-J, Wang C-Y, Chou D-W, Wang N-F, Houng M-P (2020) Fabrication of Non-enzymatic Ni–Au Alloy Nanowire Glucose Sensor. Sens Mater 32:1843. https://doi.org/10.18494/sam.2020.2479

    Article  Google Scholar 

  7. Savk A, Cellat K, Arikan K, Tezcan F, Gulbay SK, Kizildag S, Isgin ES, Sen F (2019) Highly monodisperse Pd-Ni nanoparticles supported on rGO as a rapid, sensitive, reusable and selective enzyme-free glucose sensor. Sci Rep 9:19228. https://doi.org/10.1038/s41598-019-55746-y

    Article  CAS  Google Scholar 

  8. Lee Y-J, Park J-Y (2011) A coral-like macroporous gold–platinum hybrid 3D electrode for enzyme-free glucose detection. Sens Actuat B Chem 155:134–139. https://doi.org/10.1016/j.snb.2010.11.037

    Article  CAS  Google Scholar 

  9. Chandrasekaran NI, Manickam M (2019) A sensitive and selective non-enzymatic glucose sensor with hollow Ni-Al-Mn layered triple hydroxide nanocomposites modified Ni foam. Sens Actuat B Chem 288:188–194. https://doi.org/10.1016/j.snb.2019.02.102

    Article  CAS  Google Scholar 

  10. Gumilar G, Kaneti YV, Henzie J, Chatterjee S, Na J, Yuliarto B, Nugraha N, Patah A, Bhaumik A, Yamauchi Y (2020) General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing. Chem Sci 11:3644–3655. https://doi.org/10.1039/c9sc05636j

    Article  CAS  Google Scholar 

  11. Rafaïdeen T, Baranton S, Coutanceau C (2019) Highly efficient and selective electrooxidation of glucose and xylose in alkaline medium at carbon supported alloyed PdAu nanocatalysts. Appl Catal B 243:641–656. https://doi.org/10.1016/j.apcatb.2018.11.006

    Article  CAS  Google Scholar 

  12. Karimi-Maleh H, Cellat K, Arıkan K, Savk A, Karimi F, Şen F (2020) Palladium-Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater Chem Phy 250:123042. https://doi.org/10.1016/j.matchemphys.2020.123042

    Article  CAS  Google Scholar 

  13. Shu H, Chang G, Su J, Cao L, Huang Q, Zhang Y, Xia T, He Y (2015) Single-step electrochemical deposition of high performance Au-graphene nanocomposites for nonenzymatic glucose sensing. Sens Actuat B Chem 220:331–339. https://doi.org/10.1016/j.snb.2015.05.094

    Article  CAS  Google Scholar 

  14. Mohapatra J, Ananthoju B, Nair V, Mitra A, Bahadur D, Medhekar NV, Aslam M (2018) Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Appl Surf Sci 442:332–341. https://doi.org/10.1016/j.apsusc.2018.02.124

    Article  CAS  Google Scholar 

  15. Atchudan R, Muthuchamy N, Edison TNJI, Perumal S, Vinodh R, Park KH, Lee YR (2019) An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles. Biosens Bioelectron 126:160–169. https://doi.org/10.1016/j.bios.2018.10.049

    Article  CAS  Google Scholar 

  16. Zhang Y, Liu Y, Su L, Zhang Z, Huo D, Hou C, Lei Y (2014) CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens Actuat B Chem 191:86–93. https://doi.org/10.1016/j.snb.2013.08.096

    Article  CAS  Google Scholar 

  17. Lv J, Kong C, Xu Y, Yang Z, Zhang X, Yang S, Meng G, Bi J, Li J, Yang S (2017) Facile synthesis of novel CuO/Cu2O nanosheets on copper foil for high sensitive nonenzymatic glucose biosensor. Sens Actuat B: Chem 248:630–638. https://doi.org/10.1016/j.snb.2017.04.052

    Article  CAS  Google Scholar 

  18. Hashemi P, Karimian N, Khoshsafar H, Arduini F, Mesri M, Afkhami A, Bagheri H (2019) Reduced graphene oxide decorated on Cu/CuO-Ag nanocomposite as a high-performance material for the construction of a non-enzymatic sensor: Application to the determination of carbaryl and fenamiphos pesticides. Mater Sci Eng C Mater Biol Appl 102:764–772. https://doi.org/10.1016/j.msec.2019.05.010

    Article  CAS  Google Scholar 

  19. Foroughi F, Rahsepar M, Hadianfard MJ, Kim H (2017) Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values. Mikrochim Acta 185:57. https://doi.org/10.1007/s00604-017-2558-8

    Article  CAS  Google Scholar 

  20. Mahmoud A, Echabaane M, Omri K, El Mir L, Ben Chaabane R (2019) Development of an impedimetric non enzymatic sensor based on ZnO and Cu doped ZnO nanoparticles for the detection of glucose. J Alloy Compd 786:960–996. https://doi.org/10.1016/j.jallcom.2019.02.060

    Article  CAS  Google Scholar 

  21. Kannan PK, Rout CS (2015) High performance non-enzymatic glucose sensor based on one-step electrodeposited nickel sulfide. Chemistry 21:9355–9359. https://doi.org/10.1002/chem.201500851

    Article  CAS  Google Scholar 

  22. Sun Y, Zhang F, Xu L, Yin Z, Song X (2014) Roughness-controlled copper nanowires and Cu nanowires–Ag heterostructures: synthesis and their enhanced catalysis. J Mater Chem A 2:18583–18592. https://doi.org/10.1039/C4TA03689A

    Article  CAS  Google Scholar 

  23. Zhuang Z, Su X, Yuan H, Sun Q, Xiao D, Choi MM (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126–132. https://doi.org/10.1039/b712970j

    Article  CAS  Google Scholar 

  24. Cao M, Wang H, Kannan P, Ji S, Wang X, Zhao Q, Linkov V, Wang R (2019) Highly efficient non-enzymatic glucose sensor based on CuxS hollow nanospheres. Appl Surf Sci 492:407–416. https://doi.org/10.1016/j.apsusc.2019.06.248

    Article  CAS  Google Scholar 

  25. Liu X, Sui Y, Yang X, Jiang L, Wang F, Wei Y, Zou B (2015) A feasible approach to synthesize Cu2O microcrystals and their enhanced non-enzymatic sensor performance. RSC Adv 5:59099–59105. https://doi.org/10.1039/c5ra08586a

    Article  CAS  Google Scholar 

  26. Liu X, Sui Y, Yang X, Wei Y, Zou B (2016) Cu nanowires with clean surfaces: synthesis and enhanced electrocatalytic activity. ACS Appl Mater Interf 8:26886–26894. https://doi.org/10.1021/acsami.6b09717

    Article  CAS  Google Scholar 

  27. Zhang Y, Su L, Manuzzi D, De Los Monteros HV, Jia W, Huo D, Hou C, Lei Y (2012) Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron 31:426–432. https://doi.org/10.1016/j.bios.2011.11.006

    Article  CAS  Google Scholar 

  28. Kevin M, Lim GYR, Ho GW (2015) Facile control of copper nanowire dimensions via the Maillard reaction: using food chemistry for fabricating large-scale transparent flexible conductors. Green Chem 17:1120–1126. https://doi.org/10.1039/c4gc01566e

    Article  CAS  Google Scholar 

  29. Ye S, Rathmell AR, Ha YC, Wilson AR, Wiley BJ (2014) The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires. Small 10:1771–1778. https://doi.org/10.1002/smll.201303005

    Article  CAS  Google Scholar 

  30. Ye S, Stewart IE, Chen Z, Li B, Rathmell AR, Wiley BJ (2016) How copper nanowires grow and how to control their properties. Acc Chem Res 49:442–451. https://doi.org/10.1021/acs.accounts.5b00506

    Article  CAS  Google Scholar 

  31. Gao T, Meng GW, Zhang J, Wang YW, Liang CH, Fan JC, Zhang LD (2001) Template synthesis of single-crystal Cu nanowire arrays by electrodeposition. Appl Phys A Mater Sci Process 73:251–254. https://doi.org/10.1007/s003390100910

    Article  CAS  Google Scholar 

  32. Kumar DR, Woo K, Moon J (2015) Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. Nanoscale 7:17195–17210. https://doi.org/10.1039/C5NR05138J

    Article  CAS  Google Scholar 

  33. Zhao S, Han F, Li J, Meng X, Huang W, Cao D, Zhang G, Sun R, Wong CP (2018) Advancements in copper nanowires: synthesis, purification, assemblies, surface modification, and applications. Small 14:1800047. https://doi.org/10.1002/smll.201800047

    Article  CAS  Google Scholar 

  34. Aziz A, Zhang T, Lin Y-H, Daneshvar F, Sue H-J, Welland ME (2017) 1D copper nanowires for flexible printable electronics and high ampacity wires. Nanoscale 9:13104–13111. https://doi.org/10.1039/C7NR02478A

    Article  CAS  Google Scholar 

  35. Xiong J, Wang Y, Xue Q, Wu X (2011) Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid. Green Chem 13:900. https://doi.org/10.1039/c0gc00772b

    Article  CAS  Google Scholar 

  36. Wei H, Sun J-J, Guo L, Li X, Chen G-N (2009) Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode. Chem Commun 20:2842–2844. https://doi.org/10.1039/B904673A

    Article  Google Scholar 

  37. Luo J, Jiang S, Zhang H, Jiang J, Liu X (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53. https://doi.org/10.1016/j.aca.2011.10.025

    Article  CAS  Google Scholar 

  38. Hou L, Zhao H, Bi S, Xu Y, Lu Y (2017) Ultrasensitive and highly selective sandpaper-supported copper framework for non-enzymatic glucose sensor. Electrochim Acta 248:281–291. https://doi.org/10.1016/j.electacta.2017.07.142

    Article  CAS  Google Scholar 

  39. Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) Trends in CO oxidation rates for metal nanoparticles and close-packed, stepped, and kinked surfaces. J Phy Chem C 113:10548–10553. https://doi.org/10.1021/jp811185g

    Article  CAS  Google Scholar 

  40. Guo M-M, Xia Y, Huang W, Li Z (2015) Electrochemical fabrication of stalactite-like copper micropillar arrays via surface rebuilding for ultrasensitive nonenzymatic sensing of glucose. Electrochim Acta 151:340–346. https://doi.org/10.1016/j.electacta.2014.11.041

    Article  CAS  Google Scholar 

  41. Huang T-K, Lin K-W, Tung S-P, Cheng T-M, Chang IC, Hsieh Y-Z, Lee C-Y, Chiu H-T (2009) Glucose sensing by electrochemically grown copper nanobelt electrode. J Electroanal Chem 636:123–127. https://doi.org/10.1016/j.jelechem.2009.08.011

    Article  CAS  Google Scholar 

  42. Wu H-X, Cao W-M, Li Y, Liu G, Wen Y, Yang H-F, Yang S-P (2010) In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non enzymatic glucose sensor materials. Electrochim Acta 55(37):3734–3740. https://doi.org/10.1016/j.electacta.2010.02.017

    Article  CAS  Google Scholar 

  43. Guo M-M, Wang P-S, Zhou C-H, Xia Y, Huang W, Li Z (2014) An ultrasensitive non-enzymatic amperometric glucose sensor based on a Cu-coated nanoporous gold film involving co-mediating. Sens Actuat B Chem 203:388–395. https://doi.org/10.1016/j.snb.2014.07.007

    Article  CAS  Google Scholar 

  44. Mei L, Zhang P, Chen J, Chen D, Quan Y, Gu N, Zhang G, Cui R (2016) Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion. Microchim Acta 183:1359–1365. https://doi.org/10.1007/s00604-016-1764-0

    Article  CAS  Google Scholar 

  45. Xu G-R, Ge C, Liu D, Jin L, Li Y-C, Zhang T-H, Rahman MM, Li X-B, Kim W (2019) In-situ electrochemical deposition of dendritic Cu-Cu2S nanocomposites onto glassy carbon electrode for sensitive and non-enzymatic detection of glucose. J Electroanal Chem 847:113177. https://doi.org/10.1016/j.jelechem.2019.05.059

    Article  CAS  Google Scholar 

  46. Viswanathan P, Park J, Kang D-K, Hong J-D (2019) Polydopamine-wrapped Cu/Cu(II) nano-heterostructures: an efficient electrocatalyst for non-enzymatic glucose detection. Coll Surf, A 580:123689. https://doi.org/10.1038/s41598-019-55746-y

    Article  CAS  Google Scholar 

  47. Zhang Y, Li N, Xiang Y, Wang D, Zhang P, Wang Y, Lu S, Xu R, Zhao J (2020) A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 156:506–513. https://doi.org/10.1016/j.carbon.2019.10.006

    Article  CAS  Google Scholar 

  48. Wang S, Jiang L, Hu J, Wang Q, Zhan S, Lu Y (2020) Dual-functional CuxO/Cu electrodes for supercapacitors and non-enzymatic glucose sensors fabricated by femtosecond laser enhanced thermal oxidation. J Alloy Compd 815:152105. https://doi.org/10.1016/j.jallcom.2019.152105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Basic and Applied Basic Research Foundation (No.19201910240002799), Undergraduate Training Program for Innovation and Entrepreneurship of Harbin University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Xinmei Liu, Chunyang Yang and Xu Zhao designed and performed experiments and analyzed data. Wenlong Yang and Chen Liang provided intellectual input; Jiaqi Lin wrote the manuscript.

Corresponding authors

Correspondence to Xinmei Liu or Wenlong Yang.

Ethics declarations

Conflicts of interest

All authors contributed to the discussion. The authors declare no competing financial interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, C., Yang, W. et al. One-pot synthesis of uniform Cu nanowires and their enhanced non-enzymatic glucose sensor performance. J Mater Sci 56, 5520–5531 (2021). https://doi.org/10.1007/s10853-020-05617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05617-z

Navigation