Skip to main content
Log in

A dual-template defective 3DOMM-TiO2-x for enhanced non-enzymatic electrochemical glucose determination

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A defective three dimensionally ordered macro-mesoporous TiO2-X (3DOMM-TiO2-X) was successfully prepared through dual-template method and applied as non-enzymatic electrochemical glucose sensor. The introduced oxygen vacancies and Ti3+ defects through defect engineering, as well as the macro-mesoporous structure induced by dual template, synergistically improve the performance of glucose determination. The Nafion/3DOMM-TiO2-X/FTO electrode shows better current response to glucose than commercial P25 and 3DOM-TiO2. A two-stage wide detection linear range of 1 μM ~ 2.32 mM and 2.32 mM ~ 14.72 mM was observed, with the sensitivity of 14.11 μA mM−1 cm−2 and 3.44 μA mM−1 cm−2, detection limits of 0.15 μM and 0.63 μM (S/N = 3), respectively. The electrode also exhibits superior reproducibility, stability, and selectivity performance. Furthermore, a reactive oxygen species oxidation mechanism was proposed and investigated. The Nafion/3DOMM-TiO2-X/FTO electrode also exhibits the potential as a photoelectrochemical electrode. Our results indicate the feasibility of the strategies to enhance the sensing ability by improving electronic conductivity through constructing 3DOMM porous structure and defect engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 2

Similar content being viewed by others

References

  1. Bjork M, Melin EO, Frisk T, Thunander M (2020) Admission glucose level was associated with increased short-term mortality and length-of-stay irrespective of diagnosis, treating medical specialty or concomitant laboratory values. Eur J Intern Med 75:71–78. https://doi.org/10.1016/j.ejim.2020.01.010

    Article  CAS  Google Scholar 

  2. Jayanthi Kalaivani G, Suja SK (2019) Nanomolar level sensing of glucose in food samples using glucose oxidase confined MWCNT-Inulin-TiO2 bio-nanocomposite. Food Chem 298:124981–124992. https://doi.org/10.1016/j.foodchem.2019.124981

    Article  CAS  Google Scholar 

  3. Wang L, Wang N, Wen J et al (2020) Ultrasensitive sensing of environmental nitroaromatic contaminants on nanocomposite of Prussian blue analogues cubes grown on glucose-derived porous carbon. Chem Eng J 397:125450–125460. https://doi.org/10.1016/j.cej.2020.125450

    Article  CAS  Google Scholar 

  4. Stolarczyk K, Rogalski J, Bilewicz R (2020) NAD(P)-dependent glucose dehydrogenase: applications for biosensors, bioelectrodes, and biofuel cells. Bioelectrochemistry 135:107574–107592. https://doi.org/10.1016/j.bioelechem.2020.107574

    Article  CAS  Google Scholar 

  5. Yu S, Li D, Chong H, Sun C, Xu K (2014) Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy. Opt Laser Eng 55:78–83. https://doi.org/10.1016/j.optlaseng.2013.10.016

    Article  Google Scholar 

  6. Xie WQ, Gong YX, Yu KX (2017) Rapid quantitative detection of glucose content in glucose injection by reaction headspace gas chromatography. J Chromatogr A 1520:143–146. https://doi.org/10.1016/j.chroma.2017.09.018

    Article  CAS  Google Scholar 

  7. Xu S, Jiang L, Liu Y, Liu P, Wang W, Luo X (2019) A morphology-based ultrasensitive multicolor colorimetric assay for detection of blood glucose by enzymatic etching of plasmonic gold nanobipyramids. Anal Chim Acta 1071:53–58. https://doi.org/10.1016/j.aca.2019.04.053

    Article  CAS  Google Scholar 

  8. Wu Z, Zhao J, Yin Z, Wang X, Li Z, Wang X (2020) Highly sensitive photoelectrochemical detection of glucose based on BiOBr/TiO2 nanotube array p-n heterojunction nanocomposites. Sensor Actuat B-Chem 312:127978–127986. https://doi.org/10.1016/j.snb.2020.127978

    Article  CAS  Google Scholar 

  9. Meng W, Wen Y, Dai L, He Z, Wang L (2018) A novel electrochemical sensor for glucose detection based on Ag@ZIF-67 nanocomposite. Sensor Actuat B-Chem 260:852–860. https://doi.org/10.1016/j.snb.2018.01.109

    Article  CAS  Google Scholar 

  10. Zaidi SA, Shin JH (2016) Recent developments in nanostructure based electrochemical glucose sensors. Talanta 149:30–42. https://doi.org/10.1016/j.talanta.2015.11.033

    Article  CAS  Google Scholar 

  11. Sehit E, Altintas Z (2020) Significance of nanomaterials in electrochemical glucose sensors: an updated review (2016–2020). Biosens Bioelectron 159:112165–112218. https://doi.org/10.1016/j.bios.2020.112165

    Article  CAS  Google Scholar 

  12. Unnikrishnan B, Palanisamy S, Chen SM (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite. Biosens Bioelectron 39:70–75. https://doi.org/10.1016/j.bios.2012.06.045

    Article  CAS  Google Scholar 

  13. Song Y, Lu X, Li Y, Guo Q, Chen S, Mao L, Hou H, Wang L (2016) Nitrogen-doped carbon nanotubes supported by macroporous carbon as an efficient enzymatic biosensing platform for glucose. Anal Chem 88:1371–1377. https://doi.org/10.1021/acs.analchem.5b03938

    Article  CAS  Google Scholar 

  14. Yu Y, Chen Z, He S, Zhang B, Li X, Yao M (2014) Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosens Bioelectron 52:147–152. https://doi.org/10.1016/j.bios.2013.08.043

    Article  CAS  Google Scholar 

  15. Hwang DW, Lee S, Seo M, Chung TD (2018) Recent advances in electrochemical non-enzymatic glucose sensors - A review. Anal Chim Acta 1033:1–34. https://doi.org/10.1016/j.aca.2018.05.051

    Article  CAS  Google Scholar 

  16. Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46–57. https://doi.org/10.1016/j.aca.2005.05.080

    Article  CAS  Google Scholar 

  17. Han L, Zhang S, Han L, Yang D-P, Hou C, Liu A (2014) Porous gold cluster film prepared from Au@BSA microspheres for electrochemical nonenzymatic glucose sensor. Electrochim Acta 138:109–114. https://doi.org/10.1016/j.electacta.2014.06.095

    Article  CAS  Google Scholar 

  18. Park S, Park S, Jeong RA, Boo H, Park J, Kim HC, Chung TD (2012) Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt. Biosens Bioelectron 31:284–291. https://doi.org/10.1016/j.bios.2011.10.033

    Article  CAS  Google Scholar 

  19. Niu X, Lan M, Chen C, Zhao H (2012) Nonenzymatic electrochemical glucose sensor based on novel Pt-Pd nanoflakes. Talanta 99:1062–1067. https://doi.org/10.1016/j.talanta.2012.07.039

    Article  CAS  Google Scholar 

  20. Yang J, Liang X, Cui L, Liu H, Xie J, Liu W (2016) A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects. Biosens Bioelectron 80:171–174. https://doi.org/10.1016/j.bios.2016.01.056

    Article  CAS  Google Scholar 

  21. Luo X, Zhang Z, Wan Q, Wu K, Yang N (2015) Lithium-doped NiO nanofibers for non-enzymatic glucose sensing. Electrochem Commun 61:89–92. https://doi.org/10.1016/j.elecom.2015.10.005

    Article  CAS  Google Scholar 

  22. Zhang Y, Liu Y-Q, Bai Y, Chu W, Sh J (2020) Confinement preparation of hierarchical NiO-N-doped carbon@reduced graphene oxide microspheres for high-performance non-enzymatic detection of glucose. Sensor Actuat B-Chem 309:127779–127788. https://doi.org/10.1016/j.snb.2020.127779

    Article  CAS  Google Scholar 

  23. Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548. https://doi.org/10.1016/j.bios.2010.07.050

    Article  CAS  Google Scholar 

  24. Meher SK, Rao GR (2013) Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose. Nanoscale 5:2089–2099. https://doi.org/10.1039/c2nr33264g

    Article  CAS  Google Scholar 

  25. Zhao Y, Fan L, Zhang Y et al (2015) Hyper-branched Cu@Cu2O coaxial nanowires mesh electrode for ultra-sensitive glucose detection. ACS Appl Mater Inter 7:16802–16812. https://doi.org/10.1021/acsami.5b04614

    Article  CAS  Google Scholar 

  26. Asif MH, Ali SM, Nur O et al (2010) Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. Biosens Bioelectron 25:2205–2211. https://doi.org/10.1016/j.bios.2010.02.025

    Article  CAS  Google Scholar 

  27. Tarlani A, Fallah M, Lotfi B, Khazraei A, Golsanamlou S, Muzart J, Mirza-Aghayan M (2015) New ZnO nanostructures as non-enzymatic glucose biosensors. Biosens Bioelectron 67:601–607. https://doi.org/10.1016/j.bios.2014.09.063

    Article  CAS  Google Scholar 

  28. Jang HD, Kim SK, Chang H, Roh KM, Choi JW, Huang J (2012) A glucose biosensor based on TiO-Graphene composite. Biosens Bioelectron 38:184–188. https://doi.org/10.1016/j.bios.2012.05.033

    Article  CAS  Google Scholar 

  29. Bao S-J, Li CM, Zang J-F, Cui X-Q, Qiao Y, Guo J (2008) New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Funct Mater 18:591–599. https://doi.org/10.1002/adfm.200700728

    Article  CAS  Google Scholar 

  30. Guo Q, Liu L, Zhang M, Hou H, Song Y, Wang H, Zhong B, Wang L (2017) Hierarchically mesostructured porous TiO2 hollow nanofibers for high performance glucose biosensing. Biosens Bioelectron 92:654–660. https://doi.org/10.1016/j.bios.2016.10.036

    Article  CAS  Google Scholar 

  31. Chiu WT, Chang TM, Sone M, Tixier-Mita A, Toshiyoshi H (2020a) Roles of TiO2 in the highly robust Au nanoparticles-TiO2 modified polyaniline electrode towards non-enzymatic sensing of glucose. Talanta 212:120780. https://doi.org/10.1016/j.talanta.2020.120780

    Article  CAS  Google Scholar 

  32. Jiang Y, Zheng B, Du J, Liu G, Guo Y, Xiao D (2013) Electrophoresis deposition of Ag nanoparticles on TiO(2) nanotube arrays electrode for hydrogen peroxide sensing. Talanta 112:129–135. https://doi.org/10.1016/j.talanta.2013.03.015

    Article  CAS  Google Scholar 

  33. Pang X, He D, Luo S, Cai Q (2009) An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sensor Actuat B-Chem 137:134–138. https://doi.org/10.1016/j.snb.2008.09.051

    Article  CAS  Google Scholar 

  34. Mirescu A, Berndt H, Martin A, Prüße U (2007) Long-term stability of a 0.45% Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions. Appl Catal A-Gen 317:204–209. https://doi.org/10.1016/j.apcata.2006.10.016

    Article  CAS  Google Scholar 

  35. Tang W, Li L, Zeng X (2015) A glucose biosensor based on the synergistic action of nanometer-sized TiO2 and polyaniline. Talanta 131:417–423. https://doi.org/10.1016/j.talanta.2014.08.019

    Article  CAS  Google Scholar 

  36. Li X, Yao J, Liu F, He H, Zhou M, Mao N, Xiao P, Zhang Y (2013) Nickel/Copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sensor Actuat B-Chem 181:501–508. https://doi.org/10.1016/j.snb.2013.02.035

    Article  CAS  Google Scholar 

  37. Chen G, Wang H, Wei X, Wu Y, Gu W, Hu L, Xu D, Zhu C (2020) Efficient Z-Scheme heterostructure based on TiO2/Ti3C2T /Cu2O to boost photoelectrochemical response for ultrasensitive biosensing. Sensor Actuat B-Chem 312:127951–127958. https://doi.org/10.1016/j.snb.2020.127951

    Article  CAS  Google Scholar 

  38. Luo S, Su F, Liu C et al (2011) A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor. Talanta 86:157–163. https://doi.org/10.1016/j.talanta.2011.08.051

    Article  CAS  Google Scholar 

  39. Paul A, Srivastava DN (2018) Amperometric glucose sensing at nanomolar level using MOF-encapsulated TiO2 platform. ACS Omega 3:14634–14640. https://doi.org/10.1021/acsomega.8b01968

    Article  CAS  Google Scholar 

  40. Tobaldi DM, Espro C, Leonardi SG et al (2020) Photo-electrochemical properties of CuO–TiO2 heterojunctions for glucose sensing. J Mater Chem C 8:9529–9539. https://doi.org/10.1039/d0tc01975e

    Article  CAS  Google Scholar 

  41. Zhang R, Dai H, Du Y et al (2011) P123-PMMA dual-templating generation and unique physicochemical properties of three-dimensionally ordered macroporous iron oxides with nanovoids in the crystalline walls. Inorg Chem 50:2534–2544. https://doi.org/10.1021/ic1023604

    Article  CAS  Google Scholar 

  42. Li Z, Xing X, Meng D et al (2019) Hierarchical structure with highly ordered macroporous-mesoporus-organic frameworks as dual function for Co2 fixation. iScience 15:514–523. https://doi.org/10.1016/j.isci.2019.05.006

    Article  CAS  Google Scholar 

  43. Peer M, Lusardi M, Jensen KF (2017) Facile soft-templated synthesis of high-surface area and highly porous carbon nitrides. Chem Mater 29:1496–1506. https://doi.org/10.1021/acs.chemmater.6b03570

    Article  CAS  Google Scholar 

  44. Tao X, Du J, Yang Y et al (2011) TiC nanorods derived from cotton fibers: chloride-assisted VLS growth, structure, and mechanical properties. Cryst Growth Des 11:4422–4426. https://doi.org/10.1021/cg2005979

    Article  CAS  Google Scholar 

  45. Gorsd MN, Blanco MN, Pizzio LR (2016) Polystyrene/silica microspheres with core/shell structure as support of tungstophosphoric acid. Mater Chem Phys 171:281–289. https://doi.org/10.1016/j.matchemphys.2016.01.019

    Article  CAS  Google Scholar 

  46. Wang X, Gu J, Tian L, Zhang X (2017) Hierarchical porous interlocked polymeric microcapsules: sulfonic acid functionalization as acid catalysts. Sci Rep-UK 7:44178–44184. https://doi.org/10.1038/srep44178

    Article  CAS  Google Scholar 

  47. Zhou G, Meng H, Cao Y et al (2018) Surface plasmon resonance-enhanced solar-driven photocatalytic performance from Ag nanoparticles-decorated Ti3+ self-doped porous black TiO2 pillars. J Ind Eng Chem 64:188–193. https://doi.org/10.1016/j.jiec.2018.03.015

    Article  CAS  Google Scholar 

  48. Yang W, Shen H, Min H, Ge J (2020) Enhanced acetone sensing performance in black TiO2 by Ag modification. J Mater Sci 55:10399–10411. https://doi.org/10.1007/s10853-020-04703-6

    Article  CAS  Google Scholar 

  49. Li K, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J (2015) In-Situ-Reduced Synthesis of Ti(3)(+) Self-Doped TiO(2)/g-C(3)N(4) Heterojunctions with High Photocatalytic Performance under LED Light Irradiation. ACS Appl Mater Inter 7:9023–9030. https://doi.org/10.1021/am508505n

    Article  CAS  Google Scholar 

  50. Shayegan Z, Haghighat F, Lee C-S, Bahloul A, Huard M (2018) Effect of surface fluorination of P25-TiO2 on adsorption of indoor environment volatile organic compounds. Chem Eng J 346:578–589. https://doi.org/10.1016/j.cej.2018.04.043

    Article  CAS  Google Scholar 

  51. Phongamwong T, Donphai W, Prasitchoke P, Rameshan C, Barrabés N, Klysubun W, Rupprechter G, Chareonpanich M (2017) Novel visible-light-sensitized Chl-Mg/P25 catalysts for photocatalytic degradation of rhodamine B. Appl Catal B-Environ 207:326–334. https://doi.org/10.1016/j.apcatb.2017.02.042

    Article  CAS  Google Scholar 

  52. Babu KJ, Zahoor A, Nahm KS, Ramachandran R, Rajan MAJ, Gnana kumar G, (2014) The influences of shape and structure of MnO2 nanomaterials over the non-enzymatic sensing ability of hydrogen peroxide. J Nanopart Res 16:2250–2259. https://doi.org/10.1007/s11051-014-2250-4

    Article  CAS  Google Scholar 

  53. Vennila P, Yoo DJ, Kim AR, Kumar GG (2017) Ni-Co/Fe3O4 flower-like nanocomposite for the highly sensitive and selective enzyme free glucose sensor applications. J Alloy Compd 703:633–642. https://doi.org/10.1016/j.jallcom.2017.01.044

    Article  CAS  Google Scholar 

  54. Ghanbari K, Babaei Z (2016) Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite. Anal Biochem 498:37–46. https://doi.org/10.1016/j.ab.2016.01.006

    Article  CAS  Google Scholar 

  55. Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85:3561–3569. https://doi.org/10.1021/ac3030976

    Article  CAS  Google Scholar 

  56. Safavi A, Maleki N, Farjami E (2009) Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24:1655–1660. https://doi.org/10.1016/j.bios.2008.08.040

    Article  CAS  Google Scholar 

  57. Ko C-Y, Huang J-H, Raina S, Kang WP (2013) A high performance non-enzymatic glucose sensor based on nickel hydroxide modified nitrogen-incorporated nanodiamonds. Analyst 138:3201–3208. https://doi.org/10.1039/c3an36679k

    Article  CAS  Google Scholar 

  58. Ndamanisha JC, Guo L (2009) Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode. Bioelectrochemistry 77:60–63. https://doi.org/10.1016/j.bioelechem.2009.05.003

    Article  CAS  Google Scholar 

  59. Rong L, Yang C, Qian Q, Xia X (2007) Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta 72:819–824. https://doi.org/10.1016/j.talanta.2006.12.037

    Article  CAS  Google Scholar 

  60. Yu J, Ni Y, Zhai M (2017) Highly selective non-enzyme glucose detection based on Co-CoO-Co3O4 nanocomposites prepared via a solution-combustion and subsequent heat-treating route. J Alloy Compd 723:904–911. https://doi.org/10.1016/j.jallcom.2017.06.322

    Article  CAS  Google Scholar 

  61. Espro C, Marini S, Giusi D, Ampelli C, Neri G (2020) Non-enzymatic screen printed sensor based on Cu2O nanocubes for glucose determination in bio-fermentation processes. J Electroanal Chem 873:114354–114364. https://doi.org/10.1016/j.jelechem.2020.114354

    Article  CAS  Google Scholar 

  62. Xu J, Xiao X, Zhang J, Liu J, Ni J, Xue H, Pang H (2017) Oxygen vacancies enhancing electrocatalysis performance of porous copper oxide. Part Part Stst Char Charact 34:1600420–1600428. https://doi.org/10.1002/ppsc.201600420

    Article  CAS  Google Scholar 

  63. Tekin D, Kiziltas H, Ungan H (2020) Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of orange G. J Mol Liq 306:112905–112910. https://doi.org/10.1016/j.molliq.2020.112905

    Article  CAS  Google Scholar 

  64. Onkani SP, Diagboya PN, Mtunzi FM, Klink MJ, Olu-Owolabi BI, Pakade V (2020) Comparative study of the photocatalytic degradation of 2-chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts. J Environ Manag 260:110145–110153. https://doi.org/10.1016/j.jenvman.2020.110145

    Article  CAS  Google Scholar 

  65. Luna AL, Matter F, Schreck M, Wohlwend J, Tervoort E, Colbeau-Justin C, Niederberger M (2020) Monolithic metal-containing TiO2 aerogels assembled from crystalline pre-formed nanoparticles as efficient photocatalysts for H2 generation. Appl Catal B-Environ 267:118660–118669. https://doi.org/10.1016/j.apcatb.2020.118660

    Article  CAS  Google Scholar 

  66. Gao D, Liu W, Xu Y, Wang P, Fan J, Yu H (2020) Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: One-step photoinduced deposition and its improved H2-evolution activity. Appl Catal B-Environ 260:118190–118197. https://doi.org/10.1016/j.apcatb.2019.118190

    Article  CAS  Google Scholar 

  67. Zhou WY, Liu JY, Song JY, Li JJ, Liu JH, Huang XJ (2017) Surface-electronic-state-modulated, single-crystalline (001) TiO2 nanosheets for sensitive electrochemical sensing of heavy-metal ions. Anal Chem 89:3386–3394. https://doi.org/10.1021/acs.analchem.6b04023

    Article  CAS  Google Scholar 

  68. Zhou WY, Li SS, Song JY, Jiang M, Jiang TJ, Liu JY, Liu JH, Huang XJ (2018) High electrochemical sensitivity of TiO2- x nanosheets and an electron-Induced mutual interference effect toward heavy metal ions demonstrated using X-ray absorption fine structure spectra. Anal Chem 90:4328–4337. https://doi.org/10.1021/acs.analchem.7b02315

    Article  CAS  Google Scholar 

  69. Linh NH, Nguyen TQ, Diño WA, Kasai H (2015) Effect of oxygen vacancy on the adsorption of O2 on anatase TiO2(001): A DFT-based study. Surf Sci 633:38–45. https://doi.org/10.1016/j.susc.2014.11.015

    Article  CAS  Google Scholar 

  70. Li M, Wang H, Wang X, Lu Q, Li H, Zhang Y, Yao S (2019) Ti3C2/Cu2O heterostructure based signal-off photoelectrochemical sensor for high sensitivity detection of glucose. Biosens Bioelectron 142:111535–111540. https://doi.org/10.1016/j.bios.2019.111535

    Article  CAS  Google Scholar 

  71. Lu J, Zhang H, Li S et al (2020) Oxygen-vacancy-enhanced peroxidase-like activity of reduced Co3O4 nanocomposites for the colorimetric detection of H2O2 and glucose. Inorg Chem 59:3152–3159. https://doi.org/10.1021/acs.inorgchem.9b03512

    Article  CAS  Google Scholar 

  72. Al-Mokaram A, Yahya R, Abdi MM, Mahmud H (2017) The development of non-enzymatic glucose biosensors based on electrochemically prepared polypyrrole-chitosan-titanium dioxide nanocomposite films. Nanomat -Basel 7:129–140. https://doi.org/10.3390/nano7060129

    Article  CAS  Google Scholar 

  73. Kang Q, Yang L, Cai Q (2008) An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array. Bioelectrochemistry 74:62–65. https://doi.org/10.1016/j.bioelechem.2008.06.004

    Article  CAS  Google Scholar 

  74. Yang Z, Tang Y, Li J, Zhang Y, Hu X (2014) Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor. Biosens Bioelectron 54:528–533. https://doi.org/10.1016/j.bios.2013.11.043

    Article  CAS  Google Scholar 

  75. Yang W, Xu W, Zhang N, Lai X, Peng J, Cao Y, Tu J (2020) TiO2 nanotubes modified with polydopamine and graphene quantum dots as a photochemical biosensor for the ultrasensitive detection of glucose. J Mater Sci 55:6105–6177. https://doi.org/10.1007/s10853-020-04422-y

    Article  CAS  Google Scholar 

  76. Yang W, Wang X, Hao W, Wu Q, Peng J, Tu J, Cao Y (2020) 3D hollow-out TiO2 nanowire cluster/GOx as an ultrasensitive photoelectrochemical glucose biosensor. J Mater Chem B 8:2363–2370. https://doi.org/10.1039/d0tb00082e

    Article  CAS  Google Scholar 

  77. Muthuchamy N, Gopalan A, Lee K-P (2018) Highly selective non-enzymatic electrochemical sensor based on a titanium dioxide nanowire–poly(3-aminophenyl boronic acid)–gold nanoparticle ternary nanocomposite. RSC Adv 8:2138–2147. https://doi.org/10.1039/c7ra09097h

    Article  CAS  Google Scholar 

  78. Chiu W-T, Chang T-FM, Sone M, Tixier-Mita A, Toshiyoshi H (2020b) Electrocatalytic activity enhancement of Au NPs-TiO2 electrode via a facile redistribution process towards the non-enzymatic glucose sensors. Sensor Actuat B-Chem 319:128279–128290. https://doi.org/10.1016/j.snb.2020.128279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China under the Project (51602297), the Fundamental Research Funds for the Central Universities (201861019) and the Opening Fund of State Key Laboratory of Heavy Oil Processing (SKLOP202002002). We also thank Associate Prof. Peng Bai at China University of Petroleum (Huadong) for collecting BET data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentai Wang.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Chen, L., Guo, C. et al. A dual-template defective 3DOMM-TiO2-x for enhanced non-enzymatic electrochemical glucose determination. J Mater Sci 56, 3414–3429 (2021). https://doi.org/10.1007/s10853-020-05470-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05470-0

Navigation