Skip to main content
Log in

Characterization of a nanocrystalline NiCo electroformed sheet metal

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel electroformed nanocrystalline nickel cobalt alloy (n-NiCo) developed for sheet metal applications was investigated in terms of microstructure, as well as mechanical, thermal stability, and corrosion properties. The as-received material with a grain size of 18 ± 5 nm exhibited enhanced hardness compared with conventional polycrystalline NiCo mainly due to the Hall–Petch strengthening effect. Differential scanning calorimetry and annealing treatment results revealed that the n-NiCo was stable up to 200 °C for at least 1 h, and the onset of abnormal grain growth was observed when the material was annealed to 250 °C. While low-temperature annealing treatment was shown to increase the hardness of the material slightly, annealing at temperatures of 300 °C and above resulted in a reduction in hardness due to rapid normal grain growth. The n-NiCo sheet exhibited mixed Ni/Co anodic polarization behavior in environments of varying pH.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315. https://doi.org/10.1016/0079-6425(89)90001-7

    Article  CAS  Google Scholar 

  2. Koch CC (2002) Nanostructured materials. Noyes Publications/William Andrew Publishing, NY

    Google Scholar 

  3. Whang SH (2011) Nanostructured metals and alloys: processing, microstructure mechanical properties and applications. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  4. McMahon G, Erb U (1989) Structural transitions in electroplated Ni-P alloys. J Mater Sci Lett 8:865–868. https://doi.org/10.1007/BF01730163

    Article  CAS  Google Scholar 

  5. McMahon G, Erb U (1989) Bulk amorphous and nanocrystalline Ni-P alloys by electroplating. Microstr Sci 17:447–457

    CAS  Google Scholar 

  6. Erb U, El-Sherik AM (1994) Nanocrystalline metals and process of producing the same, US Patent 5,352,266

  7. Erb U, El-Sherik AM, Cheung CKS, Aus M (1995) Nanocrystalline metals, US Patent 5,433,797

  8. Bakonyi I, Tóth-Kádár E, Tarnóczi T, Varga LK, Cziráki Á, Geröcs I, Fogarassy B (1993) Structure and properties of fine-grained electrodeposited nickel. Nanostructured Mater 3:155–161. https://doi.org/10.1016/0965-9773(93)90073-K

    Article  CAS  Google Scholar 

  9. Cziráki A, Fogarassy B, Geröcs I, Tóth-Kádár E, Bakonyi I (1994) Microstructure and growth of electrodeposited nanocrystalline nickel foils. J Mater Sci 29:4771–4777. https://doi.org/10.1007/BF00356522

    Article  Google Scholar 

  10. Matsui I, Watanabe A, Takigawa Y, Omura N, Yamamoto T (2020) Microstructural heterogeneity in the electrodeposited Ni: insights from growth modes. Sci Rep 10:5548. https://doi.org/10.1038/s41598-020-62565-z

    Article  CAS  Google Scholar 

  11. Natter H, Hempelmann R (1996) Nanocrystalline copper by pulsed electrodeposition: The effects of organic additives, bath temperature, and pH. J Phys Chem 100:19525–19532. https://doi.org/10.1021/jp9617837

    Article  CAS  Google Scholar 

  12. Würschum R, Gruß S, Gissibl B, Natter H, Hempelmann R, Schaefer HE (1997) Free volumes and thermal stability of electro-deposited nanocrystalline Pd. Nanostructured Mater 9:615–618. https://doi.org/10.1016/S0965-9773(97)00138-4

    Article  Google Scholar 

  13. Ebrahimi F, Bourne GR, Kelly MS, Matthews TE (1999) Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostructured Mater 11:343–350. https://doi.org/10.1016/S0965-9773(99)00050-1

    Article  CAS  Google Scholar 

  14. Saber K, Koch CC, Fedkiw PS (2003) Pulse current electrodeposition of nanocrystalline zinc. Mater Sci Eng A 341:174–181. https://doi.org/10.1016/S0921-5093(02)00198-3

    Article  Google Scholar 

  15. Natter H, Hempelmann R (2008) Nanocrystalline metals prepared by electrodeposition. Z Phys Chem 222:319–354. https://doi.org/10.1524/zpch.2008.222.2-3.319

    Article  CAS  Google Scholar 

  16. Gurrappa I, Binder L (2008) Electrodeposition of nanostructured coatings and their characterization - a review. Sci Technol Adv Mater 9:1–11. https://doi.org/10.1088/1468-6996/9/4/043001

    Article  CAS  Google Scholar 

  17. Bicelli LP, Bozzini B, Mele C, D’Urzo L (2008) A review of nanostructural aspects of metal electrodeposition. Int J Electrochem Sci 3:356–408

    CAS  Google Scholar 

  18. Matsui I, Takigawa Y, Uesugi T, Higashi K (2010) Tensile properties of bulk nanocrystalline Ni and Ni-W fabricated by sulfamate bath. Mater Sci Forum 654–656:1114–1117. https://doi.org/10.4028/www.scientific.net/MSF.654-656.1114

    Article  CAS  Google Scholar 

  19. Palumbo G, González F, Tomantschger K, Erb U, Aust KT (2003) Nanotechnology opportunities for electroplating industries. Plat Surf Finish 90:36–45

    Google Scholar 

  20. Palumbo G, McCrea JL, Erb U (2004) Applications of electrodeposited nanostructures. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 1. American Scientific Publishers. Stevenson Ranch, CA, pp 89–99

    Google Scholar 

  21. Erb U, Aust KT, Palumbo G (2007) Electrodeposited nanocrystalline metals, alloys, and composites. In: Koch CC (ed) Nanostructured materials, 2nd edn. William Andrew Publishing, NY, pp 235–292

    Chapter  Google Scholar 

  22. McCrea JL, Palumbo G, Erb U (2011) Nanocoatings for commercial and industrial applications. In: Whang SH (ed) Nanostructured metals and alloys. Elsevier, Cambridge, pp 663–686

    Chapter  Google Scholar 

  23. Mandich NV, Snyder DL (2010) Electrodeposition of Chromium. In: Schlesinger M, Paunovic M (eds) Modern electroplating, 5th edn. Wiley, USA, pp 205–248

    Google Scholar 

  24. Kim SH, Aust KT, Erb U, Gonzalez F, Palumbo G (2003) A comparison of the corrosion behaviour of polycrystalline and nanocrystalline cobalt. Scr Mater 48:1379–1384. https://doi.org/10.1016/S1359-6462(02)00651-6

    Article  CAS  Google Scholar 

  25. Kim SH, Franken T, Hibbard GD, Erb U, Aust KT, Palumbo G (2003) Effect of pH on the corrosion behaviour of nanocrystalline cobalt. J Metastab Nanocrystalline Mater 15:643–648. https://doi.org/10.4028/www.scientific.net/JMNM.15-16.643

    Article  Google Scholar 

  26. Aledresse A, Alfantazi A (2004) A study on the corrosion behaviour of nanostructured electrodeposited cobalt. J Mater Res 39:1523–1526. https://doi.org/10.1023/B:JMSC.0000013934.85378.40

    Article  CAS  Google Scholar 

  27. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B64:747–753

    Article  CAS  Google Scholar 

  28. Petch NJ (1953) The cleavage strength of polycrystals. Iron Steel Inst 174:25–28

    CAS  Google Scholar 

  29. Kim B, Park B, Bok J (2009) Process effects of double step DRIE and Ni–Co electroplating for a trench-type cantilever probe for a fine-pitched MEMS probe card. Sensors Actuators A Phys 152:252–260. https://doi.org/10.1016/j.sna.2009.03.022

    Article  CAS  Google Scholar 

  30. Lupi C, Era AD, Pasquali M (2009) Nickel – cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int J Hydrogen Energy 34:2101–2106. https://doi.org/10.1016/j.ijhydene.2009.01.015

    Article  CAS  Google Scholar 

  31. Chang Y, Chang C (2010) Biosensors and bioelectronics protein microarray chip with Ni-Co alloy coated surface. Biosens Bioelectron 25:1748–1754. https://doi.org/10.1016/j.bios.2009.12.030

    Article  CAS  Google Scholar 

  32. Brown H (1968) Addition agents, anions and inclusions in bright nickel plating the william blum lectures. Plating 55:1047–1055

    CAS  Google Scholar 

  33. National Institute for Science and Technology (1996) Weighted Standard Deviation. In: Dataplot Reference Manual, 2,. LET Subcommands and Library, U.S. Commerce Department

  34. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice-Hall, NJ

    Google Scholar 

  35. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  36. Chen LC, Spaepen F (1991) Analysis of calorimetric measurements of grain growth. J Appl Phys 69:679–688. https://doi.org/10.1063/1.347349

    Article  CAS  Google Scholar 

  37. ASTM International (2015) Standard reference test method for making potentiodynamic anodic polarization measurements. West Conshohocken, PA

    Google Scholar 

  38. Thorpe SJ, Paprocki J, Aust KT (1985) Coating material evaluation for electrochemical polarization studies. Corrosion 41:385–388. https://doi.org/10.5006/1.3583013

    Article  CAS  Google Scholar 

  39. MacDougall B, Cohen M (1975) The effect of cathodic treatment on nickel dissolution. J Electrochem Soc 122:1974–1976. https://doi.org/10.1149/1.2134219

    Article  Google Scholar 

  40. Metikos-Hukovic M, Babic R (2007) Passivation and corrosion behaviours of cobalt and cobalt – chromium – molybdenum alloy. Corros Sci 49:3570–3579. https://doi.org/10.1016/j.corsci.2007.03.023

    Article  CAS  Google Scholar 

  41. ASTM International (2011) Standard test methods for determination of carbon, sulfur, nitrogen, and oxygen in steel, iron, nickel, and cobalt alloys by various combustion and fusion techniques. West Conshohocken, PA

    Google Scholar 

  42. Dini JW (1993) Electrodeposition: the materials science of coatings and substrates. Noyes Publications, NJ

    Google Scholar 

  43. Rashidi AM, Amadeh A (2009) The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings. Surf Coatings Technol 204:353–358. https://doi.org/10.1016/j.surfcoat.2009.07.036

    Article  CAS  Google Scholar 

  44. Hibbard GD, Aust KT, Erb U (2006) The effect of starting nanostructure on the thermal stability of electrodeposited nanocrystalline Co. Acta Mater 54:2501–2510. https://doi.org/10.1016/j.actamat.2006.01.028

    Article  CAS  Google Scholar 

  45. Cizek P, Barnett MR, Nave MD, Rauch EF, Balasubramaniam R (2011) Microscale and mesoscale crystallographic textures of nanocrystalline Ni-based electrodeposits. Metall Mater Trans A Phys Metall Mater Sci 42:2048–2060. https://doi.org/10.1007/s11661-010-0583-x

    Article  CAS  Google Scholar 

  46. Wang N, Wang Z, Aust KT, Erb U (1997) Isokinetic analysis of nanocrystalline nickel electrodeposits upon annealing. Acta Mater 45:1655–1669. https://doi.org/10.1016/S1359-6454(96)00254-6

    Article  CAS  Google Scholar 

  47. Li J, Liu J, Jin M, Jin X (2013) Grain size dependent phase stability of pulse electrodeposited nano-grained Co-Ni films. J Alloys Compd 577:S151–S154. https://doi.org/10.1016/j.jallcom.2012.02.002

    Article  CAS  Google Scholar 

  48. Kolonits T, Jenei P, Tóth BG, Czigány Z, Gubicza J, Péter L, Bakonyi I (2016) Characterization of defect structure in electrodeposited nanocrystalline Ni films. J Electrochem Soc 163:D107–D114. https://doi.org/10.1149/2.0911603jes

    Article  CAS  Google Scholar 

  49. Okamoto H, Schlesinger ME, Mueller EM (2016) ASM handbook, alloy phase diagrams, vol 3, 2016th edn. ASM International, Ohio

    Book  Google Scholar 

  50. Karimzadeh A, Aliofkhazraei M, Walsh FC (2019) A review of electrodeposited Ni-Co alloy and composite coatings: microstrucure, properties and applications. Surf Coatings Technol 372:463–498

    Article  CAS  Google Scholar 

  51. Klement U, Aust KT, Erb U, El-Sherik AM (1995) Thermal stability of nanocrystalline Ni. Mater Sci Eng A 203:177–186. https://doi.org/10.1016/0921-5093(95)09864-X

    Article  Google Scholar 

  52. Hibbard GD, Erb U, Aust KT, Klement U, Palumbo G (2002) Thermal stability of nanostructured electrodeposits. J Metastable Nanocrystalline Mater 13:387–396. https://doi.org/10.4028/www.scientific.net/JMNM.13.387

    Article  Google Scholar 

  53. Klement U, Silva M, Hibbard GD (2017) Thermal stability of nanocrystalline Ni- and Co- based pulsed current electrodeposits: correlation of calorimetric measurements and microstructure development upon annealing. Trans IMF 95:20–24. https://doi.org/10.1080/00202967.2017.1263475

    Article  CAS  Google Scholar 

  54. Kaur I, Gust W, Kozma L (1989) Handbook of grain and interphase boundary diffusion data. Ziegler Press, Stuttgart

    Google Scholar 

  55. Li W, Yu B, Tam J, Giallonardo JD, Doyle D, Poirier D, Legoux JG, Lin P, Palumbo G, Erb U (2020) Microstructural characterization of copper coatings in development for application to used nuclear fuel containers. J Nucl Mater 532:152039. https://doi.org/10.1016/j.jnucmat.2020.152039

    Article  CAS  Google Scholar 

  56. Wu ZW, Lei YP, Wang Y, Fu HG (2013) Effect of cobalt content on microstructure and property of electroplated nickel-cobalt alloy coatings. Materwiss Werksttech 44:593–600. https://doi.org/10.1002/mawe.201300069

    Article  CAS  Google Scholar 

  57. Chang L, Kao PW, Chen CH (2007) Strengthening mechanisms in electrodeposited Ni-P alloys with nanocrystalline grains. Scr Mater 56:713–716. https://doi.org/10.1016/j.scriptamat.2006.12.036

    Article  CAS  Google Scholar 

  58. Rupert TJ, Trelewicz JR, Schuh CA (2012) Grain boundary relaxation strengthening of nanocrystalline Ni-W alloys. J Mater Res 27:1285–1294. https://doi.org/10.1557/jmr.2012.55

    Article  CAS  Google Scholar 

  59. Torrents A, Yang H, Mohamed FA (2010) Effect of annealing on hardness and the modulus of elasticity in bulk nanocrystalline nickel. Metall Mater Trans A 41:621–630. https://doi.org/10.1007/s11661-009-0147-0

    Article  CAS  Google Scholar 

  60. Hibbard GD, McCrea JL, Palumbo G, Aust KT, Erb U (2002) An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni. Scr Mater 47:83–87. https://doi.org/10.1016/S1359-6462(02)00098-2

    Article  CAS  Google Scholar 

  61. Abraham M, Holdway P, Thuvander M, Cerezo A, Smith GDW (2002) Thermal stability of electrodeposited nanocrystalline nickel. Mater Sci forum 386–388:397–402. https://doi.org/10.4028/www.scientific.net/MSF.386-388.397

    Article  Google Scholar 

  62. Yin WM, Whang SH, Mirshams RA (2005) Effect of interstitials on tensile strength and creep in nanostructured Ni. Acta Mater 53:383–392. https://doi.org/10.1016/j.actamat.2004.09.034

    Article  CAS  Google Scholar 

  63. Prasad MJNV, Chokshi AH (2010) Superplasticity in electrodeposited nanocrystalline nickel. Acta Mater 58:5724–5736. https://doi.org/10.1016/j.actamat.2010.06.047

    Article  CAS  Google Scholar 

  64. Zhang XF, Fujita T, Pan D, Yu JS, Sakurai T, Chen MW (2010) Influences of grain size and grain boundary segregation on mechanical behavior of nanocrystalline Ni. Mater Sci Eng A 527:2297–2304. https://doi.org/10.1016/j.msea.2009.12.005

    Article  CAS  Google Scholar 

  65. Darnbrough JE, Flewitt PEJ (2014) Growth of abnormal planar faceted grains in nanocrystalline nickel containing impurity sulphur. Acta Mater 79:421–433. https://doi.org/10.1016/j.actamat.2014.05.059

    Article  CAS  Google Scholar 

  66. Kolonits T, Czigány Z, Péter L, Bakonyi I, Gubicza J (2019) Influence of bath additives on the thermal stability of the nanostructure and hardness of Ni films processed by electrodeposition. Coatings 9:644. https://doi.org/10.3390/coatings9100644

    Article  CAS  Google Scholar 

  67. Lejcek P, Sob M, Paidar V (2017) Interfacial segregation and grain boundary embrittlement: an overview and critical assessment of experimental data and calculated results. Prog Mater Sci 87:83–139

    Article  CAS  Google Scholar 

  68. Monaco L, Avramovic-Cingara G, Palumbo G, Erb U (2018) Corrosion behaviour of electrodeposited nanocrystalline nickel-iron (NiFe) alloys in dilute H2SO4. Corros Sci 130:103–112. https://doi.org/10.1016/j.corsci.2017.10.018

    Article  CAS  Google Scholar 

  69. Wang S, Rofagha R, Roberge PR, Erb U (1995) Corrosion evaluation of electrodeposited bulk nanocrystalline nickel. In: Searson PC, Meyer GJ (eds) Proceedings of the Symposium on Nanostructured Materials in Electrochemistry. The Electrochemical Society, Pennington, pp 244–255

  70. Rofagha R, Langer R, El-Sherik AM, Erb U, Palumbo G, Aust KT (1991) The corrosion behaviour of nanocrystalline nickel. Scr Metal Mater 25:2867–2872. https://doi.org/10.1016/0956-716X(91)90171-V

    Article  CAS  Google Scholar 

  71. Sabatini M, Monaco L, Erb U (2020) Corrosion of nanocrystalline and coarse-grained nickel-iron (Ni-Fe) alloys in neutral and alkaline sulfate environments. Corros Sci 163:108233. https://doi.org/10.1016/j.corsci.2019.108233

    Article  CAS  Google Scholar 

  72. Rozlin NMN, Alfantazi AM (2013) Electrochemical properties of electrodeposited nanocrystalline cobalt and cobalt–iron alloys in acidic and alkaline solutions. J Appl Electrochem 43:721–734. https://doi.org/10.1007/s10800-013-0562-1

    Article  CAS  Google Scholar 

  73. Sato N, Okamoto G (1963) Anodic passivation of nickel in sulfuric acid solutions. J Electrochem Soc 110:605. https://doi.org/10.1149/1.2425838

    Article  CAS  Google Scholar 

  74. Hoppe HW, Strehblow HH (1989) Passive layers on Ni in 1M sodium hydroxide and 0.5M sulphuric acid. Surf Interface Anal 14:121–131

    Article  CAS  Google Scholar 

  75. Macdougall B, Cohen M (1974) Anodic oxidation of nickel in neutral sulfate solution. J Electrochem Soc 121:1152–1159

    Article  CAS  Google Scholar 

  76. Kim YJ, Oriani RA (1988) Technical note: localized corrosion of pure and sulfur-doped nickel in neutral sodium sulfate solution. Corros Sci 44:360–363. https://doi.org/10.5006/1.3583949

    Article  CAS  Google Scholar 

  77. Ohtsuka T, Sato N (1983) Anodic oxide film on cobalt in weakly alkaline solution. J El 147:167–179

    CAS  Google Scholar 

  78. Sato N, Ohtsuka T (1978) Anodic oxidation of cobalt in neutral and basic solution. J Electrochem Soc 11:1735–1740

    Article  Google Scholar 

  79. Human AM, Roebuck B, Exner HE (1998) Electrochemical polarisation and corrosion behaviour of cobalt and Co(W, C) alloys in 1 N sulphuric acid. Mater Sci Eng A 241:202–210

    Article  Google Scholar 

  80. Sato N, Okamoto G (1981) Electrochemical passivation of metals. In: Bockris JO, Conway BE, Yeager E, White RE (eds) Comprehensive treatise of electrochemistry, 4th edn. Plenum Press, Boston, pp 193–242

    Google Scholar 

  81. Friend WZ (1980) Corrosion of nickel and nickel-base alloys. Wiley, New York

    Book  Google Scholar 

  82. Bakhit B, Akbari A, Nasirpouri F, Ghasem M (2014) Corrosion resistance of Ni – Co alloy and Ni – Co / SiC nanocomposite coatings electrodeposited by sediment codeposition technique. Appl Surf Sci 307:351–359. https://doi.org/10.1016/j.apsusc.2014.04.037

    Article  CAS  Google Scholar 

  83. You YH, Gu CD, Wang XL, Tu JP (2012) Electrodeposition of Ni – Co alloys from a deep eutectic solvent. Surf Coat Technol 206:3632–3638. https://doi.org/10.1016/j.surfcoat.2012.03.001

    Article  CAS  Google Scholar 

  84. Yang X, Li Q, Zhang S, Gao H (2010) Electrochemical corrosion behaviors and corrosion protection properties of Ni – Co alloy coating prepared on sintered NdFeB permanent magnet. J Solid State Electrochem 14:1601–1608. https://doi.org/10.1007/s10008-009-0993-0

    Article  CAS  Google Scholar 

  85. Srivastava M, Selvi VE, Grips VKW, Rajam KS (2006) Corrosion resistance and microstructure of electrodeposited nickel – cobalt alloy coatings. Surf Coatings Technol 201:3051–3060. https://doi.org/10.1016/j.surfcoat.2006.06.017

    Article  CAS  Google Scholar 

  86. Badawy WA, Al-Kharafi FM, Al-Ajmi JR (2000) Electrochemical behaviour of cobalt in aqueous solutions of different pH. J Appl Electrochem 30:693–704

    Article  CAS  Google Scholar 

  87. Bard AJ (1975) Encyclopaedia of electrochemistry of the elements, vol 3. Marcel Dekker, New York

    Google Scholar 

  88. Jung H, Alfantazi A (2006) An electrochemical impedance spectroscopy and polarization study of nanocrystalline Co and Co – P alloy in 0.1M H2SO4 solution. Electrochim Acta 51:1806–1814. https://doi.org/10.1016/j.electacta.2005.06.037

    Article  CAS  Google Scholar 

  89. Gilli G, Borea P, Zucchi F, Trabanelli G (1969) Passivation of Ni caused by layers of salts in concentrated H2SO4. Corros Sci 9:673–681. https://doi.org/10.1016/S0010-938X(69)80098-3

    Article  CAS  Google Scholar 

  90. Oudar J, Marcus P (1979) Role of adsorbed sulphur in the dissolution and passivation of nickel and nickel-sulphur alloys. Appl Surf Sci 3:48–67. https://doi.org/10.1016/0378-5963(79)90060-6

    Article  CAS  Google Scholar 

  91. Marcus P, Oudar J, Olefjord I (1980) Studies of the influence of sulphur on the passivation of nickel by Auger electron spectroscopy and electron spectroscopy for chemical analysis. Mater Sci Eng 42:191–197. https://doi.org/10.1016/0025-5416(80)90028-2

    Article  CAS  Google Scholar 

  92. Di BGA, Petrocelli JV (1965) The effect of composition and structure on the electrochemical reactivity of nickel. J Electrochem Soc 112:99. https://doi.org/10.1149/1.2423478

    Article  Google Scholar 

  93. Yang XK, Mu XL, Xu ZQ, Li JN, Zhu L, Zhang SY, Li Ch, Wen BW (2012) Microstructure characteristics and corrosion resistance of Ni – Co alloy coating prepared on AZ91D magnesium alloy. Surf Eng 28:480–485. https://doi.org/10.1179/1743294411Y.0000000052

    Article  CAS  Google Scholar 

  94. Landolt D, Marlot A (2003) Microstructure and composition of pulse-plated metals and alloys. Surf Coat Technol 170:8–13

    Article  Google Scholar 

  95. Tang PT, Watanabe T, Andersen ET, Bech-Nielsen G (1995) Improved corrosion resistance of pulse plated nickel through crystallisation control. J Appl Electrochem 25:347–352

    Article  CAS  Google Scholar 

  96. Chandrasekar MS, Pushpavanam M (2008) Pulse and pulse reverse plating-Conceptual, advantages and applications. Electrochim Acta 53:3313–3322

    Article  CAS  Google Scholar 

  97. Ma C, Wang SC, Walsh FC (2015) Electrodeposition of nanocrystalline nickel-cobalt binary alloy coatings: a review. Trans IMF 93:104–112

    Article  CAS  Google Scholar 

  98. Bakhit B, Akbari A (2013) Nanocrystalline Ni – Co alloy coatings : electrodeposition using horizontal electrodes and corrosion resistance. J Coatings Technol Res 10:285–295. https://doi.org/10.1007/s11998-012-9437-3

    Article  CAS  Google Scholar 

  99. Bala H, Szymura S (1988) Corrosion characteristics of Co5Sm permanent magnets. Appl Surf Sci 32:233–238

    Article  CAS  Google Scholar 

  100. Jung H, Alfantazi A (2010) Corrosion properties of electrodeposited cobalt in sulfate solutions containing chloride ions. Electrochim Acta 55:865–869. https://doi.org/10.1016/j.electacta.2009.09.051

    Article  CAS  Google Scholar 

  101. Hoppe HW, Strehblow HH (1990) XPS and UPS examinations of passive layers on Ni and Fe53Ni alloys. Corros Sci 31:167–177. https://doi.org/10.1016/0010-938X(90)90105-E

    Article  CAS  Google Scholar 

  102. Bewick A, Gutierrez C (1992) An in-situ IR spectroscopic study of the anodic oxide film on cobalt in alkaline solutions. J Electroanal Chem 333:165–175

    Article  CAS  Google Scholar 

  103. Marcus P, Protopopoff E (1990) Potential-pH diagrams for adsorbed species. J Electrochem Soc 137:2–5

    Article  Google Scholar 

Download references

Acknowledgements

TEM and SEM characterizations were performed at the Ontario Centre for the Characterization of Advanced Materials (OCCAM). We thank Dr. R. Acosta and Dr. D. Grozea for their contributions to this work. Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

JK and MS contributed to conceptualization, methodology, formal analysis, investigation, writing—original draft, writing—review and editing, project administration. LM and JT contributed to investigation, formal analysis, writing—review and editing. JLM and GP contributed to investigation, resources, writing—review and editing.JH contributed to investigation, writing—review and editing. UE contributed to conceptualization, investigation, writing—original draft, writing—review and editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Uwe Erb.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Nathan Mara.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, J., Sabatini, M., Monaco, L. et al. Characterization of a nanocrystalline NiCo electroformed sheet metal. J Mater Sci 56, 1749–1767 (2021). https://doi.org/10.1007/s10853-020-05325-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05325-8

Navigation