Skip to main content
Log in

Wearable strain sensors enabled by integrating one-dimensional polydopamine-enhanced graphene/polyurethane sensing fibers into textile structures

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new yarn sensor-weaving integration approach was developed for fabricating textile sensor through integrating the strain-sensing yarn element into fabric structure, not only attaining the sensing function but also maintaining the exceptional property and appearance of the fabric. The effects of fabric structure and parameters were investigated; on that basis, a sateen and modified sateen structure with the optimized structural parameters were identified for fabricating sensing textiles with desired sensing performance. Based on the rational design of materials and fabric structure, the resultant textile strain sensor exhibits good sensitivity, excellent linearity, low hysteresis and outstanding repeatability (repeatability error) of 14.1, 0.976, 10.6% and 3.25% as well as 22.3, 0.961, 11.4% and 3.11% for sateen and modified sateen sensors, respectively. Especially, the sensors show superior durability under 20000 stretch-release cycles. Moreover, the sensing mechanism of such textile sensor was revealed through the examination and analysis of deformation of the strain-sensing yarn within fabric structure with the extension of fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Scilingo EP, Lorussi F, Mazzoldi A, De RD (2003) Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sens J 3:460–467

    Article  Google Scholar 

  2. Service RF (2003) Electronic textiles charge ahead. Science 301:909

    Article  Google Scholar 

  3. Castano LM, Flatau AB (2014) Smart fabric sensors and e-textile technologies: a review. Smart Mater Struct 23:053001

    Article  Google Scholar 

  4. Li S, Chen T, Xiao X (2020) Periodically inlaid carbon fiber bundles in the surface of honeycomb woven fabric for fabrication of normal pressure sensor. J Mater Sci 55:6551–6565. https://doi.org/10.1007/s10853-020-04464-2

    Article  CAS  Google Scholar 

  5. Wen J, Xu B, Zhou J (2019) Toward flexible and wearable embroidered supercapacitors from cobalt phosphides-decorated conductive fibers. Nano-Micro Lett 11:89

    Article  Google Scholar 

  6. Axisa F, Schmitt PM, Gehin C, Delhomme G, McAdams E, Dittmar A (2005) Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans Inf Technol Biomed 9:325–336

    Article  Google Scholar 

  7. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336

    Article  CAS  Google Scholar 

  8. Atalay A, Sanchez V, Atalay O, Vogt DM, Haufe F, Wood RJ, Walsh CJ (2017) Batch fabrication of customizable silicone-textile composite capacitive strain sensors for human motion tracking. Adv Mater Technol 2:1700136

    Article  Google Scholar 

  9. Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang ZL (2017) Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 29:1703700

    Article  Google Scholar 

  10. Shim BS, Chen W, Doty C, Xu C, Kotov NA (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8:4151–4157

    Article  CAS  Google Scholar 

  11. Wang Z, Huang Y, Sun J, Huang Y, Hu H, Jiang R, Gai W, Li G, Zhi C (2016) Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl Mater Interfaces 8:24837–24843

    Article  CAS  Google Scholar 

  12. Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14:11957–11992

    Article  CAS  Google Scholar 

  13. Cai G, Yang M, Xu Z, Liu J, Tang B, Wang X (2017) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403

    Article  CAS  Google Scholar 

  14. Hong J, Pan Z, Yao M, Chen J, Zhang Y (2016) A large-strain weft-knitted sensor fabricated by conductive UHMWPE/PANI composite yarns. Sens Actuators, A 238:307–316

    Article  CAS  Google Scholar 

  15. Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang C, Son S, Kim JH, Jang YH, Kim DE, Lee T (2015) Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 27:2433–2439

    Article  CAS  Google Scholar 

  16. Yildiz O, Dirican M, Fang X, Fu K, Jia H, Stano K, Zhang X, Bradford PD (2019) Hybrid carbon nanotube fabrics with sacrificial nanofibers for flexible high performance lithium-ion battery anodes. J Electrochem Soc 166:A473–A479

    Article  CAS  Google Scholar 

  17. Huang CT, Tang CF, Shen CL (2006) A wearable textile for monitoring respiration, using a yarn-based sensor. In: 2006 10th IEEE international symposium on wearable computers, pp 141–142

  18. Lorussi F, Rocchia W, Scilingo EP, Tognetti A, De Rossi D (2004) Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture. IEEE Sens J 4:807–818

    Article  Google Scholar 

  19. Seyedin S, Zhang P, Naebe M, Qin S, Chen J, Wang X, Razal JM (2019) Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horizons 6:219–249

    Article  CAS  Google Scholar 

  20. Helmer RJ, Mestrovic MA, Farrow D, Lucas S, Spratford W (2008) Smart textiles: position and motion sensing for sport, entertainment and rehabilitation. Adv Sci Tech 60:144–153

    Article  Google Scholar 

  21. Lorussi F, Scilingo EP, Tesconi M, Tognetti A, De Rossi D (2005) Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans Inf Technol Biomed 9:372–381

    Article  Google Scholar 

  22. Patel S, Park H, Bonato P, Chan L, Rodgers M (2012) A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil 9:21

    Article  Google Scholar 

  23. Coyle S, Morris D, Lau KT, Diamond D, Moyna N (2009) Textile-based wearable sensors for assisting sports performance. In: International workshop on wearable and implantable body sensor networks, pp 307–311

  24. Zhong W, Liu C, Liu Q, Piao L, Jiang H, Wang W, Liu K, Li M, Sun G, Wang D (2018) Ultrasensitive wearable pressure sensors assembled by surface-patterned polyolefin elastomer nanofiber membrane interpenetrated with silver nanowires. ACS Appl Mater Interfaces 10:42706–42714

    Article  CAS  Google Scholar 

  25. Li X, Hua T, Xu B (2017) Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core. Carbon 118:686–698

    Article  CAS  Google Scholar 

  26. Niu B, Hua T, Hu H, Xu B, Tian X, Chan K, Chen S (2019) A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing. J Mater Chem C 7:14651–14663

    Article  CAS  Google Scholar 

  27. Pun J, Hao B, Song W, Chen S, Li D, Luo L, Xia Z, Cheng D, Xu A, Cai G, Wang X (2019) Highly sensitive and durable wearable strain sensors from a core-sheath. Compos B Eng 185:107683

    Google Scholar 

  28. Cheng D, Bai X, Pan J, Ran J, Wu J, Bi S, Cai G, Wang X (2020) Immobilizing reduced graphene oxide on polydopamine-templated PET fabrics for UV protection, electrical conduction and application as wearable sensors. Mater Chem Phys 241:122371

    Article  Google Scholar 

  29. Cheng D, Bai X, Pan J, Wu J, Ran J, Cai G, Wang X (2020) In situ hydrothermal growth of Cu NPs on knitted fabrics through polydopamine templates for heating and sensing. Chem Eng J 382:123036

    Article  CAS  Google Scholar 

  30. Li B, Luo J, Huang X, Lin L, Wang L, Hu M, Tang L, Xue H, Gao J, Mai YW (2020) A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Compos B Eng 181:107580

    Article  CAS  Google Scholar 

  31. Jia Y, Yue X, Wang Y, Yan C, Zheng G, Dai K, Liu C, Shen C (2020) Multifunctional stretchable strain sensor based on polydopamine/reduced graphene oxide/electrospun thermoplastic polyurethane fibrous mats for human motion detection and environment monitoring. Compos B Eng 183:107696

    Article  CAS  Google Scholar 

  32. Li Y, Cheng XY, Leung MY, Tsang J, Tao XM, Yuen MC (2005) A flexible strain sensor from polypyrrole-coated fabrics. Synth Met 155:89–94

    Article  CAS  Google Scholar 

  33. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296

    Article  CAS  Google Scholar 

  34. Ma R, Lee J, Choi D, Moon H, Baik S (2014) Knitted fabrics made from highly conductive stretchable fibers. Nano Lett 14:1944–1951

    Article  CAS  Google Scholar 

  35. Shyr TW, Shie JW, Jhuang YE (2011) The effect of tensile hysteresis and contact resistance on the performance of strain-resistant elastic-conductive webbing. Sensors 11:1693–1705

    Article  Google Scholar 

  36. Seyedin S, Razal JM, Innis PC, Jeiranikhameneh A, Beirne S, Wallace GG (2015) Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl Mater Interfaces 7:21150–21158

    Article  CAS  Google Scholar 

  37. Abdessalem SB, Abdelkader YB, Mokhtar S, Elmarzougui S (2009) Influence of elastane consumption on plated plain knitted fabric characteristics. J Eng Fibers Fabr 4:30–35

    Google Scholar 

  38. Wu J, Zhou D, Too CO, Wallace GG (2005) Conducting polymer coated lycra. Synth Met 155:698–701

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the Research Grant Council of Hong Kong (Project: PolyU 252024/16E) for the work reported here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Hua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 21152 kb)

Supplementary material 2 (AVI 23772 kb)

Supplementary material 3 (AVI 24418 kb)

Supplementary material 4 (DOCX 470 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Chan, K., Hua, T. et al. Wearable strain sensors enabled by integrating one-dimensional polydopamine-enhanced graphene/polyurethane sensing fibers into textile structures. J Mater Sci 55, 17266–17283 (2020). https://doi.org/10.1007/s10853-020-05259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05259-1

Navigation