Skip to main content
Log in

Tuning lightweight, flexible, self-cleaning bio-inspired core–shell structure of nanofiber films for high-performance electromagnetic interference shielding

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the significant advances in electronic products, materials with good flexibility, corrosion resistance, high electrical conductivity and minimal thickness are urgently needed. Herein, we demonstrate the biomimetic core–shell structure of lightweight, flexible, self-cleaning nanofiber films for high-performance electromagnetic interference (EMI) shielding by tuning the deposition of Ag nanoparticles (AgNPs). With a thickness of 0.06 mm, PAN@TiO2@AgNPs composite films (PTA films) exhibit an average EMI shielding effectiveness (SE) of 82.60 dB. After further processing with fluorine-containing molecules, the PTA-4 film becomes superhydrophobic and anticorrosive. After a hydrophobic treatment, composite films have average SE, specific SE (SSE) and SSE/t being 79.57 dB, 360.86 dB cm3 g−1, and 60143.33 dB cm2 g−1, respectively. In particular, conductive films that undergo UV radiation and bending cycles retain a stabilized electrical conductivity. This tuning bio-inspired fabrication method provides the films with UV-resistance, superhydrophobicity and EMI SE that fit the practical applications of wearable and flexible sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Thomassin JM, Jerome C, Pardoen T, Bailly C, Huynen I (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R 74:211–232

    Google Scholar 

  2. Chen Y, Zhang H-B, Huang Y, Jiang Y, Zheng W-G, Yu Z-Z (2015) Magnetic and electrically conductive epoxy/graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding. Compos Sci Technol 118:178–185

    CAS  Google Scholar 

  3. Chen Y, Zhang H-B, Wang M, Qian X, Dasari A, Yu Z-Z (2017) Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances. Compos Sci Technol 152:254–262

    CAS  Google Scholar 

  4. Li Y, Shen B, Yi D, Zhang L, Zhai W, Wei X, Zheng W (2017) The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos Sci Technol 138:209–216

    CAS  Google Scholar 

  5. Wang S-J, Li D-S, Jiang L (2019) Synergistic Effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv Mater Interfaces 6. https://doi.org/10.1002/admi.201900961

  6. Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313

    CAS  Google Scholar 

  7. Maiti S, Bera R, Karan SK, Paria S, De A, Khatua BB (2019) PVC bead assisted selective dispersion of MWCNT for designing efficient electromagnetic interference shielding PVC/MWCNT nanocomposite with very low percolation threshold. Compos Part B-Eng 167:377–386

    CAS  Google Scholar 

  8. Wang H, Zheng K, Zhang X, Ding X, Zhang Z, Bao C, Guo L, Chen L, Tian X (2016) 3D network porous polymeric composites with outstanding electromagnetic interference shielding. Compos Sci Technol 125:22–29

    CAS  Google Scholar 

  9. Cui C-H, Yan D-X, Pang H, Jia L-C, Xu X, Yang S, Xu J-Z, Li Z-M (2017) A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chem Eng J 323:29–36

    CAS  Google Scholar 

  10. Lan C, Li C, Hu J, Yang S, Qiu Y, Ma Y (2018) High-loading carbon nanotube/polymer nanocomposite fabric coatings obtained by capillarity-assisted “excess assembly” for electromagnetic interference shielding. Adv Mater Interfaces 5(13). https://doi.org/10.1002/admi.201800116

  11. Liang LY, Han GJ, Li Y, Zhao B, Zhou B, Feng YZ, Ma JM, Wang YM, Zhang R, Liu CT (2019) Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl Mater Interf 11:25399–25409

    CAS  Google Scholar 

  12. Yim Y-J, Rhee KY, Park S-J (2016) Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites. Compos Part B-Eng 98:120–125

    CAS  Google Scholar 

  13. Tan Y-J, Li J, Gao Y, Li J, Guo S, Wang M (2018) A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding. Appl Surf Sci 458:236–244

    CAS  Google Scholar 

  14. Jia L-C, Yan D-X, Yang Y, Zhou D, Cui C-H, Bianco E, Lou J, Vajtai R, Li B, Ajayan PM, Li Z-M (2017) High strain tolerant emi shielding using carbon nanotube network stabilized rubber composite. Adv Mater Technol 2(7). https://doi.org/10.1002/admt.201700078

  15. Fu Y, Liu L, Zhang J (2014) Manipulating dispersion and distribution of graphene in PLA through novel interface engineering for improved conductive properties. ACS Appl Mater Interf 6:14069–14075

    CAS  Google Scholar 

  16. Ma X, Shen B, Zhang L, Liu Y, Zhai W, Zheng W (2018) Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application. Compos Sci Technol 158:86–93

    CAS  Google Scholar 

  17. Li T-T, Wang Y, Peng H-K, Zhang X, Shiu B-C, Lin J-H, Lou C-W (2020) Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding. Compos Part A-Appl Sci Manuf 128. https://doi.org/10.1016/j.compositesa.2019.105685

  18. Zhou B, Zhang Z, Li YL, Han GJ, Feng YZ, Wang B, Zhang DB, Ma JM, Liu CT (2020) Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl Mater Interf 12:4895–4905

    CAS  Google Scholar 

  19. Lin SC, Ma CCM, Hsiao ST, Wang YS, Yang CY, Liao WH, Li SM, Wang JA, Cheng TY, Lin CW (2016) Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl Surf Sci 385:436–444

    CAS  Google Scholar 

  20. Liu X, Yin X, Kong L, Li Q, Liu Y, Duan W, Zhang L, Cheng L (2014) Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon 68:501–510

    CAS  Google Scholar 

  21. Weng GM, Li J, Alhabeb M, Karpovich C, Wang H, Lipton J, Maleski K, Kong J, Shaulsky E, Elimelech M (2018) Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv Funct Mater 28:1803360

    Google Scholar 

  22. Zhou Z, Panatdasirisuk W, Mathis TS, Anasori B, Lu C, Zhang X, Liao Z, Gogotsi Y, Yang S (2018) Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale 29:075403

    Google Scholar 

  23. Zhao S, Gao Y, Li J, Zhang G, Zhi C, Deng L, Song R, Wang CP (2015) Layer-by-layer assembly of multifunctional porous N-doped carbon nanotube hybrid architectures for flexible conductors and beyond. ACS Appl Mater Interf 7:6716–6723

    CAS  Google Scholar 

  24. Gelves GA, Al-Saleh MH, Sundararaj U (2010) Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation. J Mater Chem 21:829–836

    Google Scholar 

  25. Zhang Y, Yang Z, Wen B (2019) An ingenious strategy to construct helical structure with excellent electromagnetic shielding performance. Adv Mater Interf 6(11). https://doi.org/10.1002/admi.201900375

  26. Lee DW, Kim H, Moon JH, Jeong J-H, Sim HJ, Kim BJ, Hyeon JS, Baughman RH, Kim SJ (2019) Orthogonal pattern of spinnable multiwall carbon nanotubes for electromagnetic interference shielding effectiveness. Carbon 152:33–39

    CAS  Google Scholar 

  27. Liang LY, Xu PG, Wang YF, Shang Y, Ma JM, Su FG, Feng YZ, He CG, Wang YM, Liu CT (2020) Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management. Chem Eng J 395:125209

    CAS  Google Scholar 

  28. Yuan Y, Yin W, Yang M, Xu F, Zhao X, Li J, Peng Q, He X, Du S, Li Y (2018) Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon 130:59–68

    CAS  Google Scholar 

  29. Oh H-J, Van-Duong D, Choi H-S (2018) Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction. Appl Surf Sci 435:7–15

    CAS  Google Scholar 

  30. Lee T-W, Lee S-E, Jeong YG (2016) Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl Mater Interf 8:13123–13132

    CAS  Google Scholar 

  31. Chimeno-Trinchet C, Fernandez-Gonzalez A, Garcia Calzon JA, Elena Diaz-Garcia M, Badia Laino R (2019) Alkyl-capped copper oxide nanospheres and nanoprolates for sustainability: water treatment and improved lubricating performance. Sci Technol Adv Mater 20:657–672

    Google Scholar 

  32. Dijith KS, Vijayan S, Prabhakaran K, Surendran KP (2019) Conducting La0.5Sr0.5CoO3-delta foams for harsh condition microwave shielding. J Ind Eng Chem 78:330–337

    Google Scholar 

  33. Xu Y, Li Y, Hua W, Zhang A, Bao J (2016) Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property. ACS Appl Mater Interf 8:24131–24142

    CAS  Google Scholar 

  34. Luo J, Wang L, Huang X, Li B, Guo Z, Song X, Lin L, Tang L-C, Xue H, Gao J (2019) Mechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shielding. ACS Appl Mater Interf 11:10883–10894

    CAS  Google Scholar 

  35. Li S, Huang J, Chen Z, Chen G, Lai Y (2017) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5:31–55

    CAS  Google Scholar 

  36. Liu H, Huang J, Chen Z, Chen G, Zhang K-Q, Al-Deyab SS, Lai Y (2017) Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation. Chem Eng J 330:26–35

    CAS  Google Scholar 

  37. Sam EK, Sam DK, Lv X, Liu B, Xiao X, Gong S, Yu W, Chen J, Liu J (2019) Recent development in the fabrication of self-healing superhydrophobic surfaces. Chem Eng J 373:531–546

    Google Scholar 

  38. Zhou X, Yu S, Zang J, Lv Z, Liu E, Zhao Y (2019) Colorful nanostructured TiO2 film with superhydrophobic-superhydrophilic switchable wettability and anti-fouling property. J Alloy Compos 798:257–266

    CAS  Google Scholar 

  39. Li T-T, Ling L, Lin M-C, Jiang Q, Lin Q, Lin J-H, Lou C-W (2019) Properties and mechanism of hydroxyapatite coating prepared by electrodeposition on a braid for biodegradable bone scaffolds. Nanomater-Basel 9. https://doi.org/10.3390/nano9050679

  40. Cao W-T, Chen F-F, Zhu Y-J, Zhang Y-G, Jiang Y-Y, Ma M-G, Chen F (2018) Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5):4583–4593

    CAS  Google Scholar 

  41. Li T-T, Cen XX, Ren H-T, Wu LW, Peng H-K, Wang W, Gao B, Lou C-W, Lin J-H (2020) Zeolitic imidazolate framework-8/polypropylene − polycarbonate barklike meltblown fibrous membranes by a facile in situ growth method for efficient PM2.5 capture. ACS Appl Mater Interf 12:8730–8739

    CAS  Google Scholar 

  42. Xu L-H, Wang L-M, Pan H, Shen Y, Ding Y, Zhang X-Y, Sheng Y (2019) Preparation of superhydrophobic Porous SiO2 aerogel using methyl trimethoxy silane single precursor and superhydrophobic cotton fabric coating from it. J Nanosci Nanotechnol 19:7799–7809

    CAS  Google Scholar 

  43. Wen G, Guo Z, Liu W (2017) Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale 9:3338–3366

    CAS  Google Scholar 

  44. Li T-T, Zhong Y, Yan M, Zhou W, Xu W, Huang S-Y, Sun F, Lou C-W, Lin J-H (2019) Synergistic effect and characterization of graphene/carbon nanotubes/polyvinyl alcohol/sodium alginate nanofibrous membranes formed using continuous needleless dynamic linear electrospinning. Nanomater-Basel 9(5). https://doi.org/10.3390/nano9050714

  45. Zhao Y, Zhang J, Xu Q, Mi H-Y, Zhang Y, Li T, Sun H, Han J, Liu C, Shen C (2020) Ultrastable and durable silicone coating on polycarbonate surface realized by nanoscale interfacial engineering. ACS Appl Mater Interf 12(11):13296–13304

    Google Scholar 

  46. Li T-T, Yan M, Xu W, Shiu B-C, Lou C-W, Lin J-H (2018) Mass-production and characterizations of polyvinyl alcohol/sodium alginate/graphene porous nanofiber membranes using needleless dynamic linear electrospinning. Polym-Basel 10(10). https://doi.org/10.3390/polym10101167

  47. Song W-L, Gong C, Li H, Chen X-D, Chen M, Yuan X, Chen H, Yang Y, Fang D (2017) Graphene-based sandwich structures for frequency selectable electromagnetic shielding. ACS Appl Mater Interf 9(41):36119–36129

    CAS  Google Scholar 

  48. Abdalla I, Salim A, Zhu M, Yu J, Li Z, Ding B (2018) Light and flexible composite nanofibrous membranes for high-efficiency electromagnetic absorption in a broad frequency. ACS Appl Mater Interf 10:44561–44569

    CAS  Google Scholar 

  49. Ji X, Chen D, Shen J, Guo S (2019) Flexible and flame-retarding thermoplastic polyurethane-based electromagnetic interference shielding composites. Chem Eng J 370:1341–1349

    CAS  Google Scholar 

  50. Rajavel K, Luo S, Wan Y, Yu X, Hu Y, Zhu P, Sun R, Wong C(2020) 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Compos Part A-Appl Sci Manuf 129. https://doi.org/10.1016/j.compositesa.2019.105693

  51. Liang LY, Yang RS, Han GJ, Feng YZ, Zhao B, Zhang R, Wang YM, Liu CT (2020) Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. ACS Appl Mater Interf 12(2):2644–2654

    CAS  Google Scholar 

  52. Wan Y-J, Zhu P-L, Yu S-H, Sun R, Wong C-P, Liao W-H (2018) Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 14. https://doi.org/10.1002/smll.201800534

  53. Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H, Huang Z, Chen Y (2015) Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 27:2049–2053

    CAS  Google Scholar 

  54. Wang J, Xiang C, Liu Q, Pan Y, Guo J (2008) Ordered mesoporous carbon/fused silica composites. Adv Funct Mater 18:2995–3002

    CAS  Google Scholar 

  55. Liu J, Che R, Chen H, Zhang F, Xia F, Wu Q, Wang M (2012) Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8:1214–1221

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Natural Science Foundation of Tianjin (18JCQNJC03400), National Natural Science Foundation of China (grant numbers 51503145 and 11702187), the Natural Science Foundation of Fujian (2018J01504, 2018J01505) and the Program for Innovative Research Team in University of Tianjin (TD13-5043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-Ting Li, Ching-Wen Lou or Jia-Horng Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Peng, HK., Li, TT. et al. Tuning lightweight, flexible, self-cleaning bio-inspired core–shell structure of nanofiber films for high-performance electromagnetic interference shielding. J Mater Sci 55, 13008–13022 (2020). https://doi.org/10.1007/s10853-020-04941-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04941-8

Navigation