Skip to main content
Log in

Interfacial effects between carbon nanotube templates and precursors on fabricating a wall-crystallized hierarchical pore system in zeolite crystals

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The failure in some direct synthesis of hierarchical zeolite with a hard- or soft-templating method would be caused by the brittle binding forces between the templates and zeolite precursors or frameworks. In present work, high-quality hierarchically porous ZSM-5 with crystalline pore walls is synthesized by using hydroxylated carbon nanotubes (CNTs) as templates. Mesopores structure with a size of about 10–35 nm similar to the diameters of the CNTs template is successfully fabricated in the as-synthesized ZSM-5 zeolite. The structural and textural properties of the as-synthesized samples are revealed by characterization of X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, in situ infrared spectroscopy of pyridine, temperature-programmed desorption of ammonia (NH3-TPD), N2 adsorption–desorption, and nuclear magnetic resonance spectroscopy in details. Catalytic cracking of tri-isopropylbenzene is chosen as a probe reaction so as to explore the catalytic performances of the hierarchical zeolite because of its notably increased external surfaces resulted from the created hierarchical pore system. A hierarchically cracking manner of bulky reactants is found over the as-synthesized the meso-zeolite ZSM-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. ChemInform 82:1–78

    CAS  Google Scholar 

  2. Meng X, Liang W, Xiao FS (2017) Sustainable routes for synthesis of zeolite catalysts. In: Van de Voorde M, Sels B (eds) Nanotechnology in catalysis. Wiley, Berlin, pp 251–274

    Google Scholar 

  3. Meng X, Xiao FS (2014) Green routes for synthesis of zeolites. Chem Rev 114:1521–1543

    CAS  Google Scholar 

  4. Vogt ETC, Weckhuysen BM (2015) Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem Soc Rev 44:7342–7370

    CAS  Google Scholar 

  5. Wang Z, Li C, Cho HJ, Shih-Chieh K, Mark AS, Wei F (2015) Direct, single-step synthesis of hierarchical zeolites without secondary templating. J Mater Chem A 3:1298–1305

    CAS  Google Scholar 

  6. He X, Ge T, Hua Z, Zhou J, Lv J, Zhou J, Liu Z, Shi J (2016) Mesoporogen-free synthesis of hierarchically structured zeolites with variable Si/Al ratios via a steam-assisted crystallization process. ACS Appl Mater Interfaces 8:7118–7124

    CAS  Google Scholar 

  7. Zhu J, Zhu YH, Zhu LK, Rigutto M, van der Made A, Yang CG, Pan SX, Wang L, Zhu LF, Jin YY, Sun Q, Wu QM, Meng XJ, Zhang DL, Han Y, Li JX, Chu YY, Zheng AM, Qiu SL, Zheng XM, Xiao FS (2014) Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template. J Am Chem Soc 136:2503–2510

    CAS  Google Scholar 

  8. Wei Y, Parmentier TE, de Jong KP, Zečević J (2015) Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem Soc Rev 44:7234–7261

    CAS  Google Scholar 

  9. Xu D, Ma Y, Jing Z, Han L, Singh B, Feng J, Shen X, Cao F, Oleynikov P, Sun H, Terasaki O, Che SA (2014) π–π interaction of aromatic groups in amphiphilic molecules directing for singlecrystalline mesostructured zeolite nanosheets. Nat Commun 5:4262–4271

    CAS  Google Scholar 

  10. Meng L, Mezari B, Goesten MG, Hensen EJM (2017) One-step synthesis of hierarchical ZSM-5 using cetyltrimethylammonium as mesoporogen and structure-directing agent. Chem Mater 29:4091–4096

    CAS  Google Scholar 

  11. Möller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42:3689–3707

    Google Scholar 

  12. Sachse A, García-Martínez J (2017) Surfactant-templating of zeolites: from design to application. Chem Mater 29:3827–3853

    CAS  Google Scholar 

  13. Verboekend D, Pérez-Ramírez J (2011) Design of hierarchical zeolite catalysts by desilication. Catal Sci Technol 1:879–890

    CAS  Google Scholar 

  14. Groen JC, Bach T, Ziese U, Paulaime-van Donk AM, de Jong KP, Moulijn JA, Pérez-Ramírez J (2005) Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J Am Chem Soc 127:10792–10793

    CAS  Google Scholar 

  15. Li J, Liu M, Guo X, Xu S, Wei Y, Liu Z, Song C (2017) Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination–realumination process: a superior MTP catalyst. ACS Appl Mater Interfaces 9:26096–26106

    CAS  Google Scholar 

  16. Garcíamartínez J, Johnson M, Valla J, Li K, Ying J (2012) Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catal Sci Technol 2:987–994

    Google Scholar 

  17. Groen JC, Zhu WD, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA (2007) Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J Am Chem Soc 129:355–360

    CAS  Google Scholar 

  18. Möller K, Yilmaz B, Müller U, Bein T (2011) Hierarchical zeolite beta via nanoparticle assembly with a cationic polymer. Chem Mater 23:4301–4310

    Google Scholar 

  19. Zhou J, Hua Z, Liu Z, Wu W, Zhu Y, Shi JL (2011) Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catal 1:287–291

    CAS  Google Scholar 

  20. White RJ, Fischer A, Goebel C, Thomas A (2014) A sustainable template for mesoporous zeolite synthesis. J Am Chem Soc 136:2715–2718

    CAS  Google Scholar 

  21. Zhu H, Liu Z, Wang Y, Kong DJ, Yuan XH, Xie ZK (2008) Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal. Chem Mater 20:1134–1139

    CAS  Google Scholar 

  22. Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122:7116–7117

    CAS  Google Scholar 

  23. Schmidt I, Boisen A, Gustavsson E, Ståh K, Pehrson S, Dahl S, Carlsson A, Jacobsen CJH (2001) Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem Mater 13:4416–4418

    CAS  Google Scholar 

  24. Zhang C, Chen H, Zhang X, Wang Q (2017) TPABr-grafted MWCNT as bifunctional template to synthesize hierarchical ZSM-5 zeolite. Mater Lett 197:111–114

    CAS  Google Scholar 

  25. Chen H, Zhang X, Zhang J, Wang Q (2017) Controllable synthesis of hierarchical ZSM-5 for hydroconversion of vegetable oil to aviation fuel-like hydrocarbons. RSC Adv 7:46109–46117

    CAS  Google Scholar 

  26. Tang K, Hong X, Qi JG (2011) Carbon nanotube templated growth of the nano-crystalline NaY zeolite. Adv Mater Res 194–196:594–597

    Google Scholar 

  27. Meng X, Nawaz F, Xiao FS (2009) Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today 4:292–301

    CAS  Google Scholar 

  28. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249

    CAS  Google Scholar 

  29. Qiu Y, Wang L, Zhang X (2015) Different roles of CNTs in hierarchical HZSM-5 synthesis with hydrothermal and steam-assisted crystallization. RSC Adv 5:78238–78246

    CAS  Google Scholar 

  30. Groen JC, Peffer LAA, Pérez-Ramírez J (2003) Pore size determination in modified micro- and mesoporous materials. pitfalls and limitations in gas adsorption data analysis. Micropor Mesopor Mater 60:1–17

    CAS  Google Scholar 

  31. Neves TM, Fernandes JO, Lião LM, da Silva ED, da Rosa CA, Mortola VB (2019) Glycerol dehydration over micro- and mesoporous ZSM-5 synthesized from a one-step method. Micropor Mesopor Mater 275:244–252

    CAS  Google Scholar 

  32. Zhang HB, Hu ZJ, Huang L, Zhang HX, Song KS, Wang L, Shi ZP, Ma JX, Zhuang Y, Shen W, Zhang YH, Xu HL, Tang Y (2015) Dehydration of glycerol to acrolein over hierarchical ZSM-5 zeolites: effects of mesoporosity and acidity. ACS Catal 5:2548–2558

    CAS  Google Scholar 

  33. Li WC, Lu AH, Palkovits R, Schmidt W, Spliethoff B, Schüth F (2005) Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the Beckmann rearrangement of cyclohexanone oxime. J Am Chem Soc 127:12595–12600

    CAS  Google Scholar 

  34. Liu JY, Wang JG, Li N, Zhao H, Zhou HJ, Sun PC, Chen TH (2012) Polyelectrolyte-surfactant complex as a template for the synthesis of zeolites with intracrystalline mesopores. Langmuir 28:8600–8607

    CAS  Google Scholar 

  35. Pagis C, Prates ARM, Farrusseng D, Bats N, Tuel A (2016) Hollow zeolite structures: an overview of synthesis methods. Chem Mater 8:5205–5223

    Google Scholar 

  36. Sazama P, Dědeček J, Gábová V, Wichterlová B, Spoto G, Bordiga S (2008) Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene. J Catal 254:180–189

    CAS  Google Scholar 

  37. Araki S, Kiyohara Y, Tanaka S, Miyake Y (2012) Crystallization process of zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether as organic template. J Colloids Interf Sci 376:28–33

    CAS  Google Scholar 

  38. Nagy JB, Gabelica Z, Debras G, Bodart P, Derouane EG, Jacobs PA (1983) High-resolution magic-angle-spinning solid-state 29 Si NMR characterization of the structure and aluminium orderings of zeolites. J Mol Catal 20:327–336

    CAS  Google Scholar 

  39. Xin H, Li X, Fang Y, Yi X, Hu W, Chu Y, Zhang F, Zheng A, Zhang H, Li X (2014) Dehydration of Ethanol over Post-Treated ZSM-5 Zeolites. J Catal 312:204–215

    CAS  Google Scholar 

  40. Zhao QQ, Qin B, Zheng JJ, Du YZ, Sun WH, Ling FX, Zhang XW, Li RF (2014) Core-shell structured zeolite-zeolite composites comprising Y zeolite cores and nano-β zeolite shells: synthesis and application in hydrocracking of VGO oil. Chem Eng J 257:262–272

    CAS  Google Scholar 

  41. Du YZ, Kong QL, Gao ZH, Wang ZJ, Zheng JJ, Qin B, Pan M, Li WL, Li RF (2018) Flowerlike hierarchical Y with dramatically increased external surface: a potential catalyst contributing to improving precracking for Bulky reactant molecules. Ind Eng Chem Res 57:7395–7403

    CAS  Google Scholar 

  42. Wang QH, Zhang LC, Yao ZJ, Guo YN, Gao ZH, Zheng JJ, Li WL, Fan BB, Wang Y, Chen SW, Li RF (2020) Synthesis of loosely aggregating polycrystalline ZSM-5 with luxuriant mesopore structure and its hierarchically cracking for bulky reactants. Mater Chem Phys 243:122610–122618

    CAS  Google Scholar 

  43. Zheng JJ, Zhang HY, Liu YJ, Wang GS, Kong QL, Pan M, Tian HP, Li RF (2016) Synthesis of wool-ball-like ZSM-5 with enhanced external surfaces and improved diffusion: a potential high-efficiency FCC catalyst component for elevating pre-cracking of large molecules and catalytic longevity. Catal Lett 146:1457–1469

    CAS  Google Scholar 

  44. Vu X, Bentrup U, Hunger M, Kraehnert R, Armbruster U, Martin A (2014) Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst. J Mater Sci 49:5676–5689. https://doi.org/10.1007/s10853-014-8287-z

    Article  CAS  Google Scholar 

  45. Yang XY, Tian G, Chen HL, Li Y, Rooke JC, Wei YX, Liu ZM, Deng Z, Van Tendeloo G, Su BL (2011) Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance. Chem Eur J 17:14987–14995

    CAS  Google Scholar 

  46. Miao P, Li K, Fan J, Xu N, Zhu X, Li C (2019) Efficient ring-opening reaction of tetralin over nanosized ZSM-5 Zeolite: effect of SiO2/Al2O3 ratio and reaction condition. Energy Fuel 33:9480–9490

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (21371129, U19B2003, 21706177) and SinoPEC (116050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajun Zheng or Ruifeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Sun, X., Pan, M. et al. Interfacial effects between carbon nanotube templates and precursors on fabricating a wall-crystallized hierarchical pore system in zeolite crystals. J Mater Sci 55, 10412–10426 (2020). https://doi.org/10.1007/s10853-020-04708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04708-1

Navigation