Skip to main content
Log in

Synthesis and electrochemical performance of gold nanoparticles deposited onto a reduced graphene oxide/nickel foam hybrid structure for hydrazine detection

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, an ultrahigh sensitive hydrazine electrochemical sensor based on gold nanoparticles integrated into a reduced graphene oxide/nickel foam (AuNPs-rGO@NF) hybrid structure was synthesized using a facile coating and electrochemical deposition method. The morphology and elemental composition of the as-synthesized AuNPs-rGO@NF structure was comprehensively investigated. Both cyclic voltammetry and potential amperometry results show the optimum AuNPs-rGO@NF sensor exhibits excellent electrochemical performances including higher sensitivity (14.635 μA μM−1 cm−2), lower limit of detection (0.056 μM; S/N = 3), wider linear detection range (0.2–200 μM), good selectivity and long-term stability. Meanwhile, the results of real sample analysis indicate the AuNPs-rGO@NF sensor has great potential for practical electrochemical hydrazine sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Zhang J, Gao W, Dou M, Wang F, Liu J, Li Z, Ji J (2015) Nanorod-constructed porous Co3O4 nanowires: highly sensitive sensors for the detection of hydrazine. Analyst 140(5):1686–1692

    Article  CAS  Google Scholar 

  2. Soomro RA, Baloach Q, Tahira A, Ibupoto ZH, Khaskheli GQ, Sirajuddin, Deewani VK, Hallam KR, Rajar K, Willander M (2017) Rice-like CuO nanostructures for sensitive electrochemical sensing of hydrazine. Microsyst Technol 23(3):731–738

    Article  CAS  Google Scholar 

  3. Chen W, Liu W, Liu XJ, Kuang YQ, Yu RQ, Jiang JH (2017) A novel fluorescent probe for sensitive detection and imaging of hydrazine in living cells. Talanta 162:225–231

    Article  CAS  Google Scholar 

  4. Dai G, Xie J, Li C, Liu S (2017) Flower-like Co3O4/graphitic carbon nitride nanocomposite based electrochemical sensor and its highly sensitive electrocatalysis of hydrazine. J Alloys Compd 727:43–51

    Article  CAS  Google Scholar 

  5. Smolenkov AD, Shpigun OA (2012) Direct liquid chromatographic determination of hydrazines: a review. Talanta 102:93–100

    Article  CAS  Google Scholar 

  6. Ma Y, Highsmith AL, Hill CM, Pan S (2018) Dark-field scattering spectroelectrochemistry analysis of hydrazine oxidation at au nanoparticle-modified transparent electrodes. J Phys Chem C 122(32):18603–18614

    Article  CAS  Google Scholar 

  7. Partyka J, Krenkova J, Cmelik R, Foret F (2018) Multi-charged labeling of oligosaccharides and N-linked glycans by hexahistidine-based tags for capillary electrophoresis-mass spectrometry analysis. J Chromatogr A 1560:91–96

    Article  CAS  Google Scholar 

  8. Pan B, Xu J, Zhang X, Li J, Wang M, Ma J, Liu L, Zhang D, Tong Z (2018) Electrostatic self-assembly behaviour of exfoliated Sr2Nb3O10-nanosheets and cobalt porphyrins: exploration of non-noble electro-catalysts towards hydrazine hydrate oxidation. J Mater Sci 53(9):6494–6504. https://doi.org/10.1007/s10853-018-2033-x

    Article  CAS  Google Scholar 

  9. Liu S, Zhao J, Qin L, Liu G, Zhang Q, Li J (2019) Fabrication of Ni/Cu ordered bowl-like array film for the highly sensitive nonenzymatic detection of glucose. J Mater Sci 55:337–346. https://doi.org/10.1007/s10853-019-04059-6

    Article  CAS  Google Scholar 

  10. Ahmad OS, Bedwell TS, Esen C, Garcia-Cruz A, Piletsky SA (2019) Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol 37:294–309

    Article  CAS  Google Scholar 

  11. Zhu L, Gao YY, Han B, Liu S, Fu X, Ding H, Zhang YL (2019) Programmable laser patterning of Ag nanoparticles and reduced graphene oxide hybrid electrodes for nonenzymatic hydrogen peroxide detection. ACS Appl Nano Mater 2:7989–7996

    Article  CAS  Google Scholar 

  12. Zhang Y, Han T, Wang Z, Zhao C, Li J, Fei T, Sen L, Lu GT, Zhang T (2017) In situ formation of N-doped carbon film-immobilized Au nanoparticles-coated ZnO jungle on indium tin oxide electrode for excellent high-performance detection of hydrazine. Sens Actuators B: Chem 243:1231–1239

    Article  CAS  Google Scholar 

  13. Liu Y, Chen SS, Wang AJ, Feng JJ, Wu X, Weng X (2016) An ultra-sensitive electrochemical sensor for hydrazine based on AuPd nanorod alloy nanochains. Electrochim Acta 195:68–76

    Article  CAS  Google Scholar 

  14. Yu B, Kuang D, Liu S, Liu C, Zhanga T (2014) Template-assisted self-assembly method to prepare three-dimensional reduced graphene oxide for dopamine sensing. Sens Actuators B: Chem 205:120–126

    Article  CAS  Google Scholar 

  15. Yang J, Zhang E, Li X, Yu Y, Qu J, Yu ZZ (2016) Direct reduction of graphene oxide by Ni foam as a high-capacitance supercapacitor electrode. ACS Appl Mater Interfaces 8(3):2297–2305

    Article  CAS  Google Scholar 

  16. Dong S, Dao AQ, Zheng B, Tan Z, Fu C, Liu H, Xiao F (2015) One-step electrochemical synthesis of three-dimensional graphene foam loaded nickel–cobalt hydroxides nanoflakes and its electrochemical properties. Electrochim Acta 152:195–201

    Article  CAS  Google Scholar 

  17. Zhao Z, Zhang J, Wang W, Sun Y, Li P, Hu J, Chen L, Gong W, Zhao (2019) Synthesis and electrochemical properties of Co3O4-rGO/CNTs composites towards highly sensitive nitrite detection. Appl Surf Sci 485:274–282

    Article  CAS  Google Scholar 

  18. Kong X, Ma D, Zhang J, Gong Q, Wang Y, Feng W (2020) Synthesis of Sn2Nb2O7-GO nanocomposite as an anode material with enhanced lithium storage performance. J Mater Sci 55(8):3561–3570. https://doi.org/10.1007/s10853-019-04220-1

    Article  CAS  Google Scholar 

  19. Zhang Y, Zeng GM, Tang L, Chen J, Zhu Y, He XX, He Y (2015) Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection. Anal Chem 87:989–996

    Article  CAS  Google Scholar 

  20. Liu Y, Liu L, Shan J, Zhang J (2015) Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol. J Hazard Mater 290:1–8

    Article  CAS  Google Scholar 

  21. She P, Yin S, He Q, Zhang X, Xu K, Shang Y, Men X, Zeng S, Sun H, Lliu Z (2017) A self-standing macroporous Au/ZnO/reduced graphene oxide foam for recyclable photocatalysis and photocurrent generation. Electrochim Acta 246:35–42

    Article  CAS  Google Scholar 

  22. Raj S, Srivastava SK, Kar P, Roy P, Raj (2019) In situ growth of Co3O4 nanoflakes on reduced graphene oxide-wrapped Ni-foam as high performance asymmetric supercapacitor. Electrochim Acta 302:327–337

    Article  CAS  Google Scholar 

  23. Cheng QH, Tao K, Han X, Yang YJ, Yang Z, Ma QX, Han L (2019) Ultrathin Ni-MOF nanosheet arrays grown on polyaniline decorated Ni foam as an advanced electrode for asymmetric supercapacitors with high energy density. Dalton Trans 48:4119–4123

    Article  CAS  Google Scholar 

  24. Chen QL, Lei SJ, Deng PQ, Ou XL, Chen LF, Wang W, Xiao YH, Cheng BC (2017) Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. J Mater Chem A 5(36):19323–19332

    Article  CAS  Google Scholar 

  25. Zhao Y, Liu X, Wang X, Zhang P, Shi J (2017) Peony petal-like 3D graphene-nickel oxide nanocomposite decorated nickel foam as high-performance electrocatalyst for direct glucose alkaline fuel cell. Int J Hydrogen Energy 42(50):29863–29873

    Article  CAS  Google Scholar 

  26. Li C, Li M, Bo X, Yang L, Mtukula AC, Guo L (2016) Facile synthesis of electrospinning Mn2O3–Fe2O3 loaded carbon fibers for electrocatalysis of hydrogen peroxide reduction and hydrazine oxidation. Electrochim Acta 211:255–264

    Article  CAS  Google Scholar 

  27. Heydari H, Gholivand MB, Abdolmalek A (2016) Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: an ultra-sensitive hydrazine sensor. Mater Sci Eng, C 66:16–24

    Article  CAS  Google Scholar 

  28. Fang XY, Yu XX, Zheng HM, Jin HB, Wang L, Cao MS (2015) Temperature-and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys Lett A 379:2245–2251

    Article  CAS  Google Scholar 

  29. Zhao Z, Sun Y, Li P, Zhang W, Lian K, Hu J, Chen Y (2016) Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine. Talanta 158:283–291

    Article  CAS  Google Scholar 

  30. Jeena SE, Selvaraju T (2016) Facile growth of Ag@ Pt bimetallic nanorods on electrochemically reduced graphene oxide for an enhanced electrooxidation of hydrazine. J Chem Sci 128:357–363

    Article  CAS  Google Scholar 

  31. Devasenathipathy R, Mani V, Chen SM (2014) Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode. Talanta 124:43–51

    Article  CAS  Google Scholar 

  32. Yue X, Yang W, Xu M, Liu X, Jia J (2015) High performance of electrocatalytic oxidation and determination of hydrazine based on Pt nanoparticles/TiO2 nanosheets. Talanta 144:1296–1300

    Article  CAS  Google Scholar 

  33. Daemi S, Ashkarran AA, Bahari A, Ghasemi S (2017) Fabrication of a gold nanocage/graphene nanoscale platform for electrocatalytic detection of hydrazine. Sens Actuators B: Chem 245:55–65

    Article  CAS  Google Scholar 

  34. Chen LX, Jiang LY, Wang AJ, Chen QY, Feng JJ (2016) Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction. Electrochim Acta 190:872–878

    Article  CAS  Google Scholar 

  35. Shahid MM, Rameshkumar P, Basirunc WJ, Wijayantha Y, Chiu WS, Khiew PS, Huang NM (2018) An electrochemical sensing platform of cobalt oxide@ gold nanocubes interleaved reduced graphene oxide for the selective determination of hydrazine. Electrochim Acta 259:606–616

    Article  CAS  Google Scholar 

  36. Zhang Y, Zhang Y, Zhang D, Li S, Jiang C, Su Y (2019) Confinement preparation of Au nanoparticles embedded in ZIF-67-derived N-doped porous carbon for high-performance detection of hydrazine in liquid/gas phase. Sens Actuators B: Chem 285:607–616

    Article  CAS  Google Scholar 

  37. Filik H, Çetintaş G, Avan AA, Aydar S, Koç SN, Boz İ (2013) Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide–Nafion composite film. Talanta 116:245–250

    Article  CAS  Google Scholar 

  38. Yang Z, Zheng X, Zheng J (2017) A facile one-step synthesis of Fe2O3 nanoparticles/reduced graphene oxide for enhanced hydrazine sensing. J Electrochem Soc 164:B74–B80

    Article  CAS  Google Scholar 

  39. Wang Q, Wu M, Meng S, Zang X, Dai Z, Si W, Huang W, Dong X (2016) Hydrazine sensor based on Co3O4/rGO/carbon cloth electrochemical electrode. Adv Mater Interfaces 3:1500691

    Article  CAS  Google Scholar 

  40. Ramachandran K, Babu K, Kumar GG, Rhan KA, Jin YD (2015) One-pot synthesis of graphene supported CuO nanorods for the electrochemical hydrazine sensor applications. Sci Adv Mater 7:329–336

    Article  CAS  Google Scholar 

  41. Yang YJ, Li W, Wu X (2014) Copper sulfide| reduced graphene oxide nanocomposite for detection of hydrazine and hydrogen peroxide at low potential in neutral medium. Electrochim Acta 123:260–267

    Article  CAS  Google Scholar 

  42. Yang Z, Sheng Q, Zhang S, Zheng X, Zheng J (2017) One-pot synthesis of Fe3O4/polypyrrole/graphene oxide nanocomposites for electrochemical sensing of hydrazine. Microchim Acta 184:2219–2226

    Article  CAS  Google Scholar 

  43. Rani Karuppasamy K, Devasenathipathy R, Wang SF (2017) A glassy carbon electrode modified with graphene oxide decorated silver phosphate nanodentrites for amperometric determination of dissolved hydrazine. Microchim Acta 184:2569–2577

    Article  CAS  Google Scholar 

  44. Sakthinathan S, Kubendhiran S, Chen SM, Sireesha P, Karuppiah C, Su C (2017) Functionalization of reduced graphene oxide with β-cyclodextrin modified palladium nanoparticles for the detection of hydrazine in environmental water samples. Electroanalysis 29:587–594

    Article  CAS  Google Scholar 

  45. Madhu R, Dinesh B, Chen SM, Saraswathi R, Mani V (2015) An electrochemical synthesis strategy for composite based ZnO microspheres–Au nanoparticles on reduced graphene oxide for the sensitive detection of hydrazine in water samples. RSC Adv 5:54379–54386

    Article  CAS  Google Scholar 

  46. Sakthinathan S, Kubendhiran S, Chen SM, Tamizhdurai P (2016) Reduced graphene oxide/gold tetraphenyl porphyrin (RGO/Au–TPP) nanocomposite as an ultrasensitive amperometric sensor for environmentally toxic hydrazine. RSC Adv 6:56375–56383

    Article  CAS  Google Scholar 

  47. Gao Y, Zhang S, Hou W, Guo H, Li Q, Dong D, Siyu W, Zhao S, Zhang H (2019) Perylene diimide derivative regulate the antimony sulfide morphology and electrochemical sensing for hydrazine. Appl Surf Sci 491:267–275

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51205274), Natural Science of Shanxi Province (201901D111090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Hu or Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhao, Z., Yang, H. et al. Synthesis and electrochemical performance of gold nanoparticles deposited onto a reduced graphene oxide/nickel foam hybrid structure for hydrazine detection. J Mater Sci 55, 9470–9482 (2020). https://doi.org/10.1007/s10853-020-04684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04684-6

Navigation