Skip to main content
Log in

A glassy carbon electrode modified with graphene oxide decorated silver phosphate nanodentrites for amperometric determination of dissolved hydrazine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemical approach for the preparation of a glassy carbon electrode (GCE) modified with graphene oxide and silver nanodentrites (AgNDs). The coating was obtained by using an aqueous solution containing silver nitrate, phosphate and ammonia. The phosphate anions act as a scaffold for the improved deposition of AgNDs. The effects of deposition potential and time and concentration of electrolyte on the formation of the AgNDs were optimized. The modified GCE displays good electrocatalytic activity towards the oxidation of dissolved hydrazine. The electron transfer coefficient and diffusion coefficient are 0.60 and 4.64 × 10−5 cm2 s−1 respectively. The electrode exhibits a linear response over the 100 nM to 670 μM hydrazine concentration range and a detection limit (LOD) of 33 nM. The sensitivity of the modified electrode is 2077 μA mM−1 cm−2 at a typical working voltage of 0.1 V (vs Ag/AgCl). This LOD is much lower than that of the allowable concentration of hydrazine in drinking water as defined by the US EPA and the WHO.

Schematic of the 2-step fabrication of a glassy carbon electrode (GCE) modified with graphene oxide (GO) and silver nanodendrites (AgND) for use in a hydrazine sensor. First, Ag3PO4 is formed by adding AgNO3 and phosphate. Secondly, the formed Ag3PO4 is converted to a colorless complex by adding ammonia and by electrolytic growth of AgND on the GO/GCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rao KM, Kumar A, Haider A, Han SS (2016) Polysaccharides based antibacterial polyelectrolyte hydrogels with silver nanoparticles. Mater Lett 184:189–192

    Article  CAS  Google Scholar 

  2. Ensafi AA, Zandi-Atashbar N, Rezaei B, Ghiaci M, Taghizadeh M (2016) Silver nanoparticles decorated carboxylate functionalized SiO 2, new nanocomposites for non-enzymatic detection of glucose and hydrogen peroxide. Electrochim Acta 214:208–216

    Article  CAS  Google Scholar 

  3. Jahanbakhshi M, Habibi B (2016) A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: application to electroanalytical determination of H 2 O 2 in fetal bovine serum. Biosens Bioelectron 81:143–150

    Article  CAS  Google Scholar 

  4. Sun S, Miao H, Xue Y, Wang Q, Li S, Liu Z (2016) Oxygen reduction reaction catalysts of manganese oxide decorated by silver nanoparticles for aluminum-air batteries. Electrochim Acta 214:49–55

    Article  CAS  Google Scholar 

  5. Noori MT, Jain SC, Ghangrekar M, Mukherjee C (2016) Biofouling inhibition and enhancing performance of microbial fuel cell using silver nano-particles as fungicide and cathode catalyst. Bioresour Technol 220:183–189

  6. Xu S, Tang B, Zheng X, Zhou J, An J, Ning X, Xu W (2009) The facet selectivity of inorganic ions on silver nanocrystals in etching reactions. Nanotechnology 20(41):415601

    Article  Google Scholar 

  7. Gu X, Nie C, Lai Y, Lin C (2006) Synthesis of silver nanorods and nanowires by tartrate-reduced route in aqueous solutions. Mater Chem Phys 96(2):217–222

    Article  CAS  Google Scholar 

  8. Das R, Sarkar S (2015) X-ray diffraction analysis of synthesized silver nanohexagon for the study of their mechanical properties. Mater Chem Phys 167:97–102

    Article  CAS  Google Scholar 

  9. Dong W, Zhang L, Li B, Wang L, Wang G, Li X, Chen B, Li C (2016) Preparation of hollow multiple-ag-nanoclustes-C-shell nanostructures and their catalytic properties. Appl Catal B Environ 180:13–19

    Article  CAS  Google Scholar 

  10. Zhang W, Tan F, Wang W, Qiu X, Qiao X, Chen J (2012) Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol. J Hazard Mater 217:36–42

    Google Scholar 

  11. Wen X, Xie Y-T, Mak WC, Cheung KY, Li X-Y, Renneberg R, Yang S (2006) Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications. Langmuir 22(10):4836–4842

    Article  CAS  Google Scholar 

  12. Gu H-X, Xue L, Zhang Y-F, Li D-W, Long Y-T (2015) Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering. ACS Appl Mater Interfaces 7(4):2931–2936

    Article  CAS  Google Scholar 

  13. Li Y-T, Qu L-L, Li D-W, Song Q-X, Fathi F, Long Y-T (2013) Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable ag–graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Biosens Bioelectron 43:94–100

    Article  CAS  Google Scholar 

  14. Rezaei B, Damiri S (2010) Electrodeposited silver nanodendrites electrode with strongly enhanced electrocatalytic activity. Talanta 83(1):197–204

    Article  CAS  Google Scholar 

  15. Fang J, You H, Kong P, Yi Y, Song X, Ding B (2007) Dendritic silver nanostructure growth and evolution in replacement reaction. Cryst Growth Des 7(5):864–867

    Article  CAS  Google Scholar 

  16. Wang X, Itoh H, Naka K, Chujo Y (2003) Tetrathiafulvalene-assisted formation of silver dendritic nanostructures in acetonitrile. Langmuir 19(15):6242–6246

    Article  CAS  Google Scholar 

  17. Wang Y, Fan X, Sun J (2009) Hydrothermal synthesis of phosphate-mediated ZnO nanosheets. Mater Lett 63(3):350–352

    Article  CAS  Google Scholar 

  18. Imai H, Iwai S, Yamabi S (2004) Phosphate-mediated ZnO nanosheets with a mosaic structure. Chem Lett 33(6):768–769

    Article  CAS  Google Scholar 

  19. Yamabi S, Yahiro J, Iwai S, Imai H (2005) Formation of cellular films consisting of wurtzite-type zinc oxide nanosheets by mediation of phosphate anions. Thin Solid Films 489(1):23–30

    Article  CAS  Google Scholar 

  20. Muthukumaran T, Philip J (2014) Enhanced thermal stability of phosphate capped magnetite nanoparticles. J Appl Phys 115(22):224304

    Article  Google Scholar 

  21. Cai Y, Pan H, Xu X, Hu Q, Li L, Tang R (2007) Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: a smart and biocompatible drug release system. Chem Mater 19(13):3081–3083

    Article  CAS  Google Scholar 

  22. Yusoff N, Rameshkumar P, Mehmood MS, Pandikumar A, Lee HW, Huang NM (2017) Ternary nanohybrid of reduced graphene oxide-nafion@ silver nanoparticles for boosting the sensor performance in non-enzymatic amperometric detection of hydrogen peroxide. Biosens Bioelectron 87:1020–1028

    Article  CAS  Google Scholar 

  23. Kamat PV (2009) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1(2):520–527

    Article  Google Scholar 

  24. Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett 10(2):577–583

    Article  CAS  Google Scholar 

  25. Zhu J, Chauhan DS, Shan D, Wu X-Y, Zhang G-Y, Zhang X-J (2014) Ultrasensitive determination of hydrazine using a glassy carbon electrode modified with pyrocatechol violet electrodeposited on single walled carbon nanotubes. Microchim Acta 181(7–8):813–820

    Article  CAS  Google Scholar 

  26. Steinhoff D, Mohr U (1988) The question of carcinogenic effects of hydrazine. Exp Pathol 33(3):133–143

    Article  CAS  Google Scholar 

  27. Rahman MM, Khan A, Marwani HM, Asiri AM (2016) Hydrazine sensor based on silver nanoparticle-decorated polyaniline tungstophosphate nanocomposite for use in environmental remediation. Microchim Acta 183(5):1787–1796

    Article  CAS  Google Scholar 

  28. Oh J-A, Shin H-S (2015) Simple and sensitive determination of hydrazine in drinking water by ultra-high-performance liquid chromatography–tandem mass spectrometry after derivatization with naphthalene-2, 3-dialdehyde. J Chromatogr A 1395:73–78

    Article  CAS  Google Scholar 

  29. Pinter JS, Brown KL, DeYoung PA, Peaslee GF (2007) Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes. Talanta 71(3):1219–1225

    Article  CAS  Google Scholar 

  30. Oh J-A, Park J-H, Shin H-S (2013) Sensitive determination of hydrazine in water by gas chromatography–mass spectrometry after derivatization with ortho-phthalaldehyde. Anal Chim Acta 769:79–83

    Article  CAS  Google Scholar 

  31. Fang B, Feng Y, Liu M, Wang G, Zhang X, Wang M (2011) Electrocatalytic oxidation of hydrazine at a glassy carbon electrode modified with nickel ferrite and multi-walled carbon nanotubes. Microchim Acta 175(1–2):145

    Article  CAS  Google Scholar 

  32. Cheng Z, Liu L, Xu S, Lu M, Wang X (2015) Temperature dependence of electrical and thermal conduction in single silver nanowire. Sci Rep 5:10718

  33. Nie H, Horiuchi K, Yamauchi H, Masai J (1997) Local surface potential measurement of Pd/GaAs contact and anodized aluminum films using scanning probe microscopy. Nanotechnology 8(3A):A24

    Article  CAS  Google Scholar 

  34. Fathi F, Lagugné-Labarthet F, Pedersen DB, Kraatz H-B (2012) Studies of the interaction of two organophosphonates with nanostructured silver surfaces. Analyst 137(19):4448–4453

    Article  CAS  Google Scholar 

  35. Vasantha V, Chen S-M (2006) Synergistic effect of a catechin-immobilized poly (3, 4-ethylenedioxythiophene)-modified electrode on electrocatalysis of NADH in the presence of ascorbic acid and uric acid. Electrochim Acta 52(2):665–674

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Dr. Rajkumar Devasenathipathy would like to gratitude National Taipei University of technology for the post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajkumar Devasenathipathy or Sea-Fue Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 8940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuppasamy, K., Devasenathipathy, R. & Wang, SF. A glassy carbon electrode modified with graphene oxide decorated silver phosphate nanodentrites for amperometric determination of dissolved hydrazine. Microchim Acta 184, 2569–2577 (2017). https://doi.org/10.1007/s00604-017-2237-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2237-9

Keywords

Navigation