Skip to main content

Advertisement

Log in

Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Efficient thermal dissipation is one of the most critical factors constraining the development of modern microelectronic devices. Placing vertically aligned carbon nanotubes (VACNTs) with anisotropic thermal conductive between high-power devices and heat sink such as copper plate can improve the interfacial thermal conductance. Due to the limited contact area between CNTs and the surface of the devices, direct use of ACNTs as thermal interface material fails to meet people’s expectations. Here, we employ reduced graphene oxide (rGO) as the substrate for the growth of CNT arrays. VACNTs grown on rGO (rGO-ACNT) by chemical vapor deposition are then used as thermal conducting filler in epoxy resin. Compared with direct contact between CNT and the interface, using CNT and reduced graphene oxide junction to form contact with the surface can improve heat transfer efficiency. The resultant composite film exhibited excellent thermal conductivity at 9.62 W m−1 K−1 along the thickness direction. The obtained rGO-ACNT and its composite present higher thermal conductivity and heat transfer ability than ACNT. This strategy offers an insight into the easy preparation of flexible and highly thermal conductive composite materials, which may enable potential applications in advanced electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhong X, Wu X, Zhou W, Kuang S (2014) An all-sic high frequency boost dc-dc converter operating at 320°C junction temperature. IEEE Trans Power Electr 29:5091–5096

    Article  Google Scholar 

  2. Ping L, Hou P, Liu C, Cheng H (2019) Vertically aligned carbon nanotube arrays as a thermal interface material. Apl Mater. https://doi.org/10.1063/1.5083868

    Article  Google Scholar 

  3. Razeeb KM, Dalton E, Cross GLW, Robinson AJ (2018) Present and future thermal interface materials for electronic devices. Int Mater Rev 63:1–21

    Article  CAS  Google Scholar 

  4. Hansson J, Nilsson TMJ, Ye L, Liu J, Chalmers UOT, Chalmers TH, Institutionen För Mikroteknologi Och Nanovetenskap EOS, Department Of Microtechnology And Nanoscience EMAS (2018) Novel nanostructured thermal interface materials: a review. Int Mater Rev 63:22–45

    Article  CAS  Google Scholar 

  5. Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  CAS  Google Scholar 

  6. Zhang R, Wen Q, Qian W, Su DS, Zhang Q, Wei F (2011) Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv Mater 23:3387–3391

    Article  CAS  Google Scholar 

  7. Marconnet AM, Panzer MA, Goodson KE (2013) Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev Mod Phys 85:1295–1326

    Article  CAS  Google Scholar 

  8. Cometto O, Sun B, Tsang SH, Huang X, Koh YK, Teo EH (2015) Vertically self-ordered orientation of nanocrystalline hexagonal boron nitride thin films for enhanced thermal characteristics. Nanoscale 7:18984–18991

    Article  CAS  Google Scholar 

  9. Cui H, Eres G, Pan Z, Ivanov I, Howe J, Wang H, Geohegan D, Puretzky A, Jin R (2006) Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays. Appl Phys Lett. https://doi.org/10.1063/1.2397008

    Article  Google Scholar 

  10. Ping L, Hou P, Liu C, Li J, Zhao Y, Zhang F, Ma C, Tai K, Cong H, Cheng H (2017) Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance. Nanoscale 9:8213–8219

    Article  CAS  Google Scholar 

  11. Tessonnier J, Su DS (2011) Recent progress on the growth mechanism of carbon nanotubes: a review. Chemsuschem 4:824–847

    Article  CAS  Google Scholar 

  12. Cola BA, Xu J, Fisher TS (2009) Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int J Heat Mass Tran 52:3490–3503.

    Article  CAS  Google Scholar 

  13. Panzer MA, Zhang G, Mann HU (2008) Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J Heat Transf. https://doi.org/10.1115/1.2885159

    Article  Google Scholar 

  14. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Article  CAS  Google Scholar 

  15. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  16. Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes†. Chem Mater 23:646–657

    Article  CAS  Google Scholar 

  17. Rao R, Chen G, Arava LMR, Kalaga K, Ishigami M, Heinz TF, Ajayan PM, Harutyunyan AR (2013) Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes. Sci Rep. https://doi.org/10.1038/srep01891

    Article  Google Scholar 

  18. Varshney V, Patnaik SS, Roy AK, Froudakis G, Farmer BL (2010) Modeling of thermal transport in pillared-graphene architectures. ACS Nano 4:1153–1161

    Article  CAS  Google Scholar 

  19. Mao Y, Zhong J (2009) The computational design of junctions by carbon nanotube insertion into a graphene matrix. New J Phys. https://doi.org/10.1088/1367-2630/11/9/093002

    Article  Google Scholar 

  20. Bao H, Shao C, Luo S, Hu M (2014) Enhancement of interfacial thermal transport by carbon nanotube-graphene junction. J Appl Phys. https://doi.org/10.1063/1.4864221

    Article  Google Scholar 

  21. Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji AO, Kittrell C, Hauge RH, Tour JM (2012) A seamless three-dimensional carbon nanotube graphene hybrid material. Nat Commun 3:1–7

    Google Scholar 

  22. Wang J, Wang JS (2006) Carbon nanotube thermal transport: ballistic to diffusive. Appl Phys Lett. https://doi.org/10.1063/1.2185727

    Article  Google Scholar 

  23. Gang Z, Baowen L (2005) Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. J Chem Phys. https://doi.org/10.1063/1.2036967

    Article  Google Scholar 

  24. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758

    Article  CAS  Google Scholar 

  25. Akoshima M, Hata K, Futaba DN, Mizuno K, Baba T, Yumura M (2009) Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method. Jpn J Appl Phys 48:5E–7E

    Article  Google Scholar 

  26. Du F, Guthy C, Kashiwagi T, Fischer JE, Winey KI (2006) An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J Polym Sci Part B Polym Phys 44:1513–1519

    Article  CAS  Google Scholar 

  27. Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl Phys Lett. https://doi.org/10.1063/1.2357580

    Article  Google Scholar 

  28. Huang J, Gao M, Pan T, Zhang Y, Lin Y (2014) Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes. Compos Sci Technol 95:16–20

    Article  CAS  Google Scholar 

  29. Min C, Yu D, Cao J, Wang G, Feng L (2013) A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55:116–125

    Article  CAS  Google Scholar 

  30. Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340

    Article  CAS  Google Scholar 

  31. Jung H, Yu S, Bae N, Cho SM, Kim RH, Cho SH, Hwang I, Jeong B, Ryu JS, Hwang J, Hong SM, Koo CM, Park C (2015) High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an l-shape kinked tube. ACS Appl Mater Interfaces 7:15256–15262

    Article  CAS  Google Scholar 

  32. Tang B, Hu G, Gao H, Hai L (2015) Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials. Int J Heat Mass Transf 85:420–429

    Article  CAS  Google Scholar 

  33. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet—carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744

    Article  CAS  Google Scholar 

  34. Lian G, Tuan C, Li L, Jiao S, Wang Q, Moon K, Cui D, Wong C (2016) Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem Mater 28:6096–6104

    Article  CAS  Google Scholar 

  35. Wang M, Chen H, Lin W, Li Z, Li Q, Chen M, Meng F, Xing Y, Yao Y, Wong C, Li Q (2013) Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film. ACS Appl Mater Interfaces 6:539–544

    Article  CAS  Google Scholar 

  36. Levchik SV, Weil ED (2010) Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polym Int 53:1901–1929

    Article  Google Scholar 

  37. Lee LH (1965) Mechanisms of thermal degradation of phenolic condensation polymers. Ii. Thermal stability and degradation schemes of epoxy resins. J Polym Sci Part A Gen Pap 3:859–882

    Article  CAS  Google Scholar 

  38. Hawkins WL (2005) Polymer degradation and stabilization. Polym News 30:120–122

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111), and Shenzhen Projects for Basic Research (Grant No. JCYJ20170307154206288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongda Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Chiang, SW., Chu, X. et al. Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials. J Mater Sci 55, 9414–9424 (2020). https://doi.org/10.1007/s10853-020-04681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04681-9

Navigation