Skip to main content
Log in

Stack of Graphene/Copper Foils/Graphene by Low-Pressure Chemical Vapor Deposition as a Thermal Interface Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Although there are several kinds of thermal interfacial materials used in the electronic semiconductor industry, such as thermal grease, thermal glue, thermal gap filler, thermal pad and thermal adhesive, the problem of heat dissipation still remains a challenge. In this context, chemical vapor deposition of graphene on copper foils in vacuum has recently become considered as a wonderful hybrid material (graphene/copper/graphene) for more demanding thermal management applications, thanks to the unique properties of graphene in comparison with other materials. We found that the thermal properties of copper films change as graphene is deposited on top of the copper surface. Especially, a single atomic plane of graphene can significantly increase the film’s thermal conductivity. Our graphene on copper foil was analyzed and measured by optical microscopy, Raman spectroscopy, scanning electron microscopy and heat transfer technique. This stack of graphene/copper/graphene materials may play a very important role as a potential material with superior thermal conductivity to replace traditional copper shim thermal pads in current electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Yu, J. Zhao, M. Wang, Y. Hu, L. Chen, and H. Xie, Nanoscale Res. Lett. 10, 113 (2015).

    Article  Google Scholar 

  2. Y. Ni, K.H. Le, Y. Chalopin, J. Bai, P. Lebarny, L. Divay, and S. Volz, Appl. Phys. Lett. 100, 193118 (2012).

    Article  Google Scholar 

  3. Y. J. Lee, in 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 1–8 (2010).

  4. G. Langer, M. Leitgeb, J. Nicolics, M. Unger, H. Hoschopf, and F.P. Wenzl, J. Microelectron. Electron. Packag. 11, 104 (2014).

    Article  Google Scholar 

  5. P. Teertstra, in Proceedings of IPACK2007, pp. 381–388 (2007).

  6. M. Golio, Proc. IEEE 103, 11 (2015).

    Article  Google Scholar 

  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  8. C. Lee, X. Wei, J.W. Kysar, and H. James, Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, I.V. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).

    Article  CAS  Google Scholar 

  10. K.I. Bolotin, K.J. Sikes, J. Hone, H.L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008).

    Article  CAS  Google Scholar 

  11. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  12. E. Pallecchi, F. Lafont, V. Cavaliere, F. Schopfer, D. Mailly, W. Poirier, and A. Ouerghi, Sci. Rep. 4, 4558 (2014).

    Article  CAS  Google Scholar 

  13. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Solid State Commun. 146, 351 (2008).

    Article  CAS  Google Scholar 

  14. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

    Article  CAS  Google Scholar 

  15. K.L. Chavez and D.W. Hess, J. Electrochem. Soc. 148, 640 (2001).

    Article  Google Scholar 

  16. S. Zhu, Q. Li, Q. Chen, W. Liu, X. Li, J. Zhang, Q. Wang, X. Wang, and H. Liu, RSC Adv. 4, 32941 (2014).

    Article  CAS  Google Scholar 

  17. T. Kaplas, A. Zolotukhin, and Y. Svirko, Opt. Express 19, 17226 (2011).

    Article  CAS  Google Scholar 

  18. C. Jia, J. Jiang, L. Gan, and X. Guo, Sci. Rep. 2, 707 (2012).

    Article  Google Scholar 

  19. K. Celebi, M.T. Cole, J.W. Choi, F. Wyczisk, P. Legagneux, N. Rupesinghe, J. Robertson, K.B.K. Teo, and H.G. Park, Nano Lett. 13, 967 (2013).

    Article  CAS  Google Scholar 

  20. A.C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  CAS  Google Scholar 

  21. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  22. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007).

    Article  CAS  Google Scholar 

  23. F. Libisch, S. Rotter, and J. Burgdorfer, Phys. Status Solid B 248, 2598 (2011).

    Article  CAS  Google Scholar 

  24. L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rep. 473, 51 (2009).

    Article  CAS  Google Scholar 

  25. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).

    Article  CAS  Google Scholar 

  26. X. Dong, P. Wang, W. Fang, C.Y. Su, Y.H. Chen, L.J. Li, W. Huang, and P. Chen, Carbon 49, 3672 (2011).

    Article  CAS  Google Scholar 

  27. A. Celzard, J.F. Mareche, G. Furdin, and S. Puricelli, J. Phys. D: Appl. Phys. 33, 3094 (2000).

    Article  CAS  Google Scholar 

  28. R. Hienonen , J. Keskinen and T. Koivuluoma, VTT Publications 619, Espoo (2006).

Download references

Acknowledgments

Trung T. PHAM would like to thank the Vietnam National Foundation for Science and Technology Development (NAFOSTED) for supporting the grant to develop this project (Code Number: 103.02-2016.84). The authors would like to thank the Center of Research and Development from Saigon Hi-Tech Park and the Ho Chi Minh City University of Technology and Education for creating good conditions to perform the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung T. Pham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.T., Huynh, T.H., Do, Q.H. et al. Stack of Graphene/Copper Foils/Graphene by Low-Pressure Chemical Vapor Deposition as a Thermal Interface Material. J. Electron. Mater. 47, 7476–7483 (2018). https://doi.org/10.1007/s11664-018-6689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6689-4

Keywords

Navigation