Skip to main content
Log in

Hollow spheres constructed by ultrathin SnS sheets for enhanced lithium storage

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we report a hollow microsphere assembled by ultrathin SnS nanosheets prepared by a template method. Hollow ferroferric oxide (Fe3O4) spheres with abundant pores on the shell are used as templates, and SnS nanosheets can grow on the surface of the Fe3O4 shell. The key factor to obtain the unique structure of SnS sphere is the utilization of Fe3O4 template. When employed as the anode for lithium-ion battery, the SnS exhibits the better electrochemical performance than that of the bulk SnS electrode. With morphology observation and electrochemical impedance spectroscopy analysis, SnS/V-SnS electrodes are proved to possess several advantages, i.e., high specific surface area facilitates electrochemical reactions due to more active sites, shortened Li+ diffusion distance, and sufficient void space to sustain the volume change, which all contribute to its improved electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang Q, Zhang W, Guo C, Liu Y, Wang C, Guo Z (2017) In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high performance sodium-ion batteries. Adv Funct Mater 27:1703390

    Google Scholar 

  2. Wang Y, Kong D, Shi W, Liu B, Sim GJ, Ge Q, Yang HY (2016) Ice templated self-supported hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater 6:1601057

    Google Scholar 

  3. Yu XY, Yu L, Shen L, Song X, Chen H, Lou XW (2014) General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv Funct Mater 24:7440–7446

    CAS  Google Scholar 

  4. Chen B, Lu H, Zhao N, Shi C, Liu E, He C, Ma L (2018) Facile synthesis and electrochemical properties of continuous porous spheres assembled from defect-rich, interlayer-expanded, and few-layered MoS2/C nanoparticles for reversible lithium storage. J Power Sources 387:16–23

    CAS  Google Scholar 

  5. Zhang YH, Wang NN, Sun CH, Lu ZX, Xue P, Tang B, Bai ZC, Dou SX (2018) 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. Chem Eng J 332:370–376

    CAS  Google Scholar 

  6. Lei X, Yu K, Qi R, Zhu Z (2018) Fabrication and theoretical investigation of MoS2–Co3S4 hybrid hollow structure as electrode material for lithium-ion batteries and supercapacitors. Chem Eng J 347:607–617

    CAS  Google Scholar 

  7. Jiang Y, Guo Y, Lu W, Feng Z, Xi B, Kai S, Zhang J, Feng J, Xiong S (2017) Rationally incorporated MoS2/SnS2 nanoparticles on graphene sheets for lithium-ion and sodium-ion batteries. ACS Appl Mater Interfaces 9:27697–27706

    CAS  Google Scholar 

  8. Luo B, Hu Y, Zhu X, Qiu T, Zhi L, Xiao M, Zhang H, Zou M, Cao A, Wang L (2018) Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodiumion storage with high rate capability. J Mater Chem A 6:1462–1472

    CAS  Google Scholar 

  9. Jiang Y, Feng Y, Xi B, Kai S, Mi K, Feng J, Zhang J, Xiong S (2016) Ultrasmall SnS2 nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries. J Mater Chem A 4:10719–10726

    CAS  Google Scholar 

  10. Guan D, Li J, Gao X, Xie Y, Yuan C (2016) Growth characteristics and influencing factors of 3D hierarchical flower-like SnS2 nanostructures and their superior lithium-ion intercalation performance. J Alloys Compd 658:190–197

    CAS  Google Scholar 

  11. Liu J, Wen Y, van Aken PA, Maier J, Yu Y (2015) In situ reduction and coating of SnS2 nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage. J Mater Chem A 3:5259–5265

    CAS  Google Scholar 

  12. Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318

    CAS  Google Scholar 

  13. Savjani N, Lewis EA, Bissett MA, Brent JR, Dryfe RAW, Haigh SJ, O’Brien P (2016) Synthesis of lateral size-controlled monolayer 1h-MoS2@Oleylamine as supercapacitor electrodes. Chem Mater 28:657–664

    CAS  Google Scholar 

  14. Yang Y, Fei H, Ruan G, Xiang C, Tour JM (2014) Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv Mater 26:8163–8168

    CAS  Google Scholar 

  15. Xiong X, Yang C, Wang G, Lin Y, Ou X, Wang J-H, Zhao B, Liu M, Lin Z, Huang K (2017) SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ Sci 10:1757–1763

    CAS  Google Scholar 

  16. Xia C, Zhang F, Liang H, Alshareef HN (2017) Layered SnS sodium ion battery anodes synthesized near room temperature. Nano Res 10:4368–4377

    CAS  Google Scholar 

  17. Li J, Zhao X, Zhang Z (2017) Ultradispersed nanoarchitecture of SnS nanoparticles/reduced graphene oxide for enhanced sodium storage performance. J Colloid Interface Sci 498:153–160

    CAS  Google Scholar 

  18. Deng Z, Jiang H, Hu Y, Li C, Liu Y, Liu H (2018) Nanospace-confined synthesis of coconut-like SnS/C nanospheres for high-rate and stable lithium-ion batteries. AIChE J 64:1965–1974

    CAS  Google Scholar 

  19. Zhang Y, Wang N, Lu Z, Xue P, Liu Y, Zhai Y, Tang B, Guo M, Qin L, Bai Z (2019) Hierarchical assembly and superior lithium/sodium storage properties of a flowerlike C/SnS@C nanocomposite. Electrochim Acta 296:891–900

    CAS  Google Scholar 

  20. Lu J, Nan C, Li L, Peng Q, Li Y (2012) Flexible SnS nanobelts: facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res 6:55–64

    Google Scholar 

  21. Li X, Liu J, Ouyang L, Yuan B, Yang L, Zhu M (2018) Enhanced cyclic stability of SnS microplates with conformal carbon coating derived from ethanol vapor deposition for sodium-ion batteries. Appl Surf Sci 436:912–918

    CAS  Google Scholar 

  22. Hu X, Chen J, Zeng G, Jia J, Cai P, Chai G, Wen Z (2017) Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. J Mater Chem A 5:23460–23470

    CAS  Google Scholar 

  23. Li S, Zheng J, Hu Z, Zuo S, Wu Z, Yan P, Pan F (2015) 3D-hierarchical SnS nanostructures: controlled synthesis, formation mechanism and lithium-ion storage performance. RSC Adv 5:72857–72862

    CAS  Google Scholar 

  24. Zhao B, Wang Z, Chen F, Yang Y, Gao Y, Chen L, Jiao Z, Cheng L, Jiang Y (2017) Three-dimensional interconnected spherical graphene framework/SnS nanocomposite for anode material with superior lithium storage performance: complete reversibility of Li2S. ACS Appl Mater Interfaces 9:1407–1415

    CAS  Google Scholar 

  25. Liu J, Gu M, Ouyang L, Wang H, Yang L, Zhu M (2016) Sandwich-like SnS/polypyrrole ultrathin nanosheets as high-performance anode materials for Li-ion batteries. ACS Appl Mater Interfaces 8:8502–8510

    CAS  Google Scholar 

  26. Xue P, Wang N, Wang Y, Zhang Y, Liu Y, Tang B, Bai Z, Dou S (2018) Nanoconfined SnS in 3D interconnected macroporous carbon as durable anodes for lithium/sodium ion batteries. Carbon 134:222–231

    CAS  Google Scholar 

  27. Zhu C, Kopold P, Li W, van Aken PA, Maier J, Yu Y (2015) A general strategy to fabricate carbon-coated 3D porous interconnected metal sulfides: case study of SnS/C nanocomposite for high-performance lithium and sodium ion batteries. Adv Sci 2:1500200

    Google Scholar 

  28. Sheng J, Yang L, Zhu Y-E, Li F, Zhang Y, Zhou Z (2017) Oriented SnS nanoflakes bound on S-doped N-rich carbon nanosheets with a rapid pseudocapacitive response as high-rate anodes for sodium-ion batteries. J Mater Chem A 5:19745–19751

    CAS  Google Scholar 

  29. Jiang Y, Song D, Wu J, Wang Z, Huang S, Xu Y, Chen Z, Zhao B, Zhang J (2019) ACS Nano 13:9100–9111

    CAS  Google Scholar 

  30. Jiang Y, Ding Y, Chen F, Wang Z, Xu Y, Huang S, Chen Z, Zhao B, Zhang J (2020) Nanoscale 12:1697–1706

    CAS  Google Scholar 

  31. Zhao B, Yang Y, Wang Z, Huang S, Wang Y, Wang S, Chen Z, Jiang Y (2018) J Power Sources 378:81–89

    CAS  Google Scholar 

  32. Zhao B, Zhuang H, Yang Y, Wang Y, Tao H, Wang Z, Jiang J, Chen Z, Huang S, Jiang Y (2019) Electrochim Acta 300:253–262

    CAS  Google Scholar 

  33. He P, Fang Y, Yu XY, Lou XWD (2017) Hierarchical nanotubes constructed by carbon-coated ultrathin SnS nanosheets for fast capacitive sodium storage. Angew Chem Int Ed 56:12202–12205

    CAS  Google Scholar 

  34. Jia H, Dirican M, Sun N, Chen C, Zhu P, Yan C, Dong X, Du Z, Guo J, Karaduman Y, Wang J, Tang F, Tao J, Zhang X (2019) SnS hollow nanofibers as anode materials for sodium-ion batteries with high capacity and ultra-long cycling stability. Chem Commun 55:505–508

    CAS  Google Scholar 

  35. Huang Z, Pan H, Yang W, Zhou H, Gao N, Fu C, Li S, Li H, Kuang Y (2018) In situ self-template synthesis of Fe–N-doped double-shelled hollow carbon spheres for oxygen reduction reaction. ACS Nano 12:208–216

    CAS  Google Scholar 

  36. Zhou TF, Pang WK, Zhang CF, Yang JP, Chen ZX, Liu HK, Guo ZP (2014) Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8:8323–8333

    CAS  Google Scholar 

  37. Cai J, Li Z, Shen PK (2012) Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries. ACS Appl Mater Interfaces 4:4093–4098

    CAS  Google Scholar 

  38. Yu Z, Li X, Yan B, Xiong D, Yang M, Li D (2017) Rational design of flower-like tin sulfide@reduced graphene oxide for high performance sodium ion batteries. Mater Res Bull 96:516–523

    CAS  Google Scholar 

  39. Lian Q, Zhou G, Zeng X, Wu C, Wei Y, Cui C, Wei W, Chen L, Li C (2016) Carbon coated SnS/SnO2 heterostructures wrapping on CNFs as an improved performance anode for Li-ion batteries: lithiation-induced structural optimization upon cycling. ACS Appl Mater Interfaces 8:30256–30263

    CAS  Google Scholar 

  40. Li S, Zheng J, Zuo S, Wu Z, Yan P, Pan F (2015) 2D hybrid anode based on SnS nanosheet bonded with graphene to enhance electrochemical performance for lithium-ion batteries. RSC Adv 5:46941–46946

    CAS  Google Scholar 

  41. Zhao J, Wang G, Hu R, Zhu K, Cheng K, Ye K, Cao D, Fan Z (2019) Ultrasmall-sized SnS nanosheets vertically aligned on carbon microtubes for sodium-ion capacitors with high energy density. J Mater Chem A 7:4047–4054

    CAS  Google Scholar 

  42. Choi SH, Kang YC (2015) Aerosol-assisted rapid synthesis of SnS–C composite spheres as anode material for Na-ion batteries. Nano Res 8:1595–1603

    CAS  Google Scholar 

  43. Cho E, Song K, Park MH, Nam KW, Kang YM (2016) SnS 3D flowers with superb kinetic properties for anodic use in next-generation sodium rechargeable batteries. Small 12:2510–2517

    CAS  Google Scholar 

  44. Zhang Y, Yang J, Zhang Y, Li C, Huang W, Yan Q, Dong X (2018) Fe2O3/SnSSe hexagonal nanoplates as lithium-ion batteries anode. ACS Appl Mater Interfaces 10:12722–12730

    CAS  Google Scholar 

  45. Zhang S, Yue L, Zhao H, Wang Z, Mi J (2017) Mwcnts wrapped flower-like SnS composite as anode material for sodium-ion battery. Mater Lett 209:212–215

    CAS  Google Scholar 

  46. Wang W, Shi L, Lan D, Li Q (2018) Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration. J Power Sources 377:1–6

    CAS  Google Scholar 

  47. Cai L, Zhang Q, Mwizerwa JP, Wan H, Yang X, Xu X, Yao X (2018) Highly crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances. ACS Appl Mater Interfaces 10:10053–10063

    CAS  Google Scholar 

  48. Liu Y, Fang Y, Zhao Z, Yuan C, Lou XW (2019) A ternary Fe1−xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv Energy Mater 9:1803052

    Google Scholar 

  49. Yang H, Xu R, Gong Y, Yao Y, Gu L, Yu Y (2018) An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. Nano Energy 48:448–455

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Nos. 21776196, 51778397) and Key R&D projects of Shanxi Province (201803D421089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui-Peng Ren or Yong-Kang Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 949 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Ren, RP. & Lv, YK. Hollow spheres constructed by ultrathin SnS sheets for enhanced lithium storage. J Mater Sci 55, 7492–7501 (2020). https://doi.org/10.1007/s10853-020-04540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04540-7

Navigation