Skip to main content

Advertisement

Log in

O/N-co-doped hierarchically porous carbon from carboxymethyl cellulose ammonium for high-performance supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nowadays, it has become a trend to prepare porous carbon as electrode materials for supercapacitors by using biomass and its derivatives by virtue of its low cost, abundant source and environmental friendliness. Carboxymethyl cellulose ammonium (CMC-NH4), a kind of cellulose derivative, is used as a carbon precursor and O/N source to prepare carbon material through cross-linking with aluminum ions, lyophilization, carbonization and activation. The as-prepared O/N-co-doped carbon samples (ONAC-500, ONAC-600 and ONAC-700) exhibit hierarchically porous structure with different size pores in carbon framework, ensuring electrolyte ions effective transport and diffusion. Meanwhile, the ONAC-600 reveals a high specific surface area of 2658 m2 g−1, abundantly porous structure with pore volume of 1.32 cm3 g−1 and effective O/N-doping, which ensure a high capacitance of 465.0 F g−1 at 1 A g−1 in 3 M KOH three-electrode system. It also shows better rate capability and good stability after 10000 cycled under 10 A g−1. Besides, the assembled all-solid-state supercapacitor with ONAC-600 delivers an acceptable energy density of 7.8 Wh kg−1 at a power density of 124.2 W kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yu M, Han Y, Li J, Wang L (2018) Magnetic N-doped carbon aerogel from sodium carboxymethyl cellulose/collagen composite aerogel for dye adsorption and electrochemical supercapacitor. Int J Biol Macromol 115:185–193. https://doi.org/10.1016/j.ijbiomac.2018.04.012

    Article  CAS  Google Scholar 

  2. Feng H, Hu H, Dong H, Xiao Y, Cai Y, Lei B, Liu Y, Zheng M (2016) Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J Power Sources 302:164–173. https://doi.org/10.1016/j.jpowsour.2015.10.063

    Article  CAS  Google Scholar 

  3. Martin W, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Cheminform 35(50):4245

    Google Scholar 

  4. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15):2483–2498

    Article  CAS  Google Scholar 

  5. Gou H, He J, Zhao G, Zhang L, Yang C, Rao H (2019) Porous nitrogen-doped carbon networks derived from orange peel for high-performance supercapacitors. Ionics 25(9):4371–4380. https://doi.org/10.1007/s11581-019-02992-9

    Article  CAS  Google Scholar 

  6. Xu Z, Chen J, Zhang X, Song Q, Wu J, Ding L, Zhang C, Zhu H, Cui H (2019) Template-free preparation of nitrogen-doped activated carbon with porous architecture for high-performance supercapacitors. Microporous Mesoporous Mater 276:280–291. https://doi.org/10.1016/j.micromeso.2018.09.023

    Article  CAS  Google Scholar 

  7. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950

    Article  CAS  Google Scholar 

  8. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: A review. Int J Hydrogen Energy 34(11):4889–4899. https://doi.org/10.1016/j.ijhydene.2009.04.005

    Article  CAS  Google Scholar 

  9. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2018) Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance. J Colloid Interface Sci 523:133–143. https://doi.org/10.1016/j.jcis.2018.03.009

    Article  CAS  Google Scholar 

  10. Lei S, Chen L, Zhou W, Deng P, Liu Y, Fei L, Lu W, Xiao Y, Cheng B (2018) Tetra-heteroatom self-doped carbon nanosheets derived from silkworm excrement for high-performance supercapacitors. J Power Sources 379:74–83. https://doi.org/10.1016/j.jpowsour.2018.01.032

    Article  CAS  Google Scholar 

  11. Lv S, Ma L, Zhou Q, Shen X, Tong H (2019) Three-dimensional self-doped hierarchical porous mussel nacre-derived carbons for high performance supercapacitors. J Mater Sci Mater Electron 30(15):14382–14390. https://doi.org/10.1007/s10854-019-01807-x

    Article  CAS  Google Scholar 

  12. Ye Z, Wang F, Jia C, Mu K, Yu M, Lv Y, Shao Z (2017) Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chem Eng J 330:1166–1173. https://doi.org/10.1016/j.cej.2017.08.070

    Article  CAS  Google Scholar 

  13. Chen J, Wei H, Chen H, Yao W, Lin H, Han S (2018) N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors. Electrochim Acta 271:49–57. https://doi.org/10.1016/j.electacta.2018.03.129

    Article  CAS  Google Scholar 

  14. Zhao G, Li Y, Zhu G, Shi J, Lu T, Pan L (2019) Biomass-based N, P, and S self-doped porous carbon for high-performance supercapacitors. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.9b00725

    Article  Google Scholar 

  15. Guo H, Gao Q (2009) Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J Power Sources 186(2):551–556. https://doi.org/10.1016/j.jpowsour.2008.10.024

    Article  CAS  Google Scholar 

  16. Chen H, Xiong Y, Yu T, Zhu P, Yan X, Wang Z, Guan S (2017) Boron and nitrogen co-doped porous carbon with a high concentration of boron and its superior capacitive behavior. Carbon 113:266–273. https://doi.org/10.1016/j.carbon.2016.11.035

    Article  CAS  Google Scholar 

  17. Tian J, Liu C, Lin C, Ma M (2019) Constructed nitrogen and sulfur codoped multilevel porous carbon from lignin for high-performance supercapacitors. J Alloy Compd 789:435–442. https://doi.org/10.1016/j.jallcom.2019.03.070

    Article  CAS  Google Scholar 

  18. Ye Z, Wang F, Jia C, Shao Z (2018) Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors. J Mater Sci 53(17):12374–12387. https://doi.org/10.1007/s10853-018-2487-x

    Article  CAS  Google Scholar 

  19. Yiju L, Guiling W, Tong W, Zhuangjun F, Peng Y (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175

    Article  Google Scholar 

  20. Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sources 341:309–317. https://doi.org/10.1016/j.jpowsour.2016.12.022

    Article  CAS  Google Scholar 

  21. Liu Y, Chang Z, Yao L, Yan S, Lin J, Chen J, Lian J, Lin H, Han S (2019) Nitrogen/sulfur dual-doped sponge-like porous carbon materials derived from pomelo peel synthesized at comparatively low temperatures for superior-performance supercapacitors. J Electroanal Chem 847:113111. https://doi.org/10.1016/j.jelechem.2019.04.071

    Article  CAS  Google Scholar 

  22. Li R, Qin C, Zhang X, Lin Z, Lv S, Jiang X (2019) Boron/nitrogen co-doped carbon synthesized from waterborne polyurethane and graphene oxide composite for supercapacitors. RSC Adv 9(3):1679–1689. https://doi.org/10.1039/c8ra09043b

    Article  CAS  Google Scholar 

  23. Li Q, Wu M, Zhao J, Lü Q, Han L, Liu R (2019) Tannic acid-assisted fabrication of N/B-codoped hierarchical carbon nanofibers from electrospun zeolitic imidazolate frameworks as free-standing electrodes for high-performance supercapacitors. J Electron Mater 48(5):3050–3058. https://doi.org/10.1007/s11664-019-07075-z

    Article  CAS  Google Scholar 

  24. Mo R-J, Zhao Y, Zhao M-M, Wu M, Wang C, Li J-P, Kuga S, Huang Y (2018) Graphene-like porous carbon from sheet cellulose as electrodes for supercapacitors. Chem Eng J 346:104–112. https://doi.org/10.1016/j.cej.2018.04.010

    Article  CAS  Google Scholar 

  25. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22(45):23710. https://doi.org/10.1039/c2jm34066f

    Article  CAS  Google Scholar 

  26. Liu X, Ma C, Li J, Zielinska B, Kalenczuk RJ, Chen X, Chu PK, Tang T, Mijowska E (2019) Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. J Power Sources 412:1–9. https://doi.org/10.1016/j.jpowsour.2018.11.032

    Article  CAS  Google Scholar 

  27. Liang J, Qu T, Kun X, Zhang Y, Chen S, Cao Y-C, Xie M, Guo X (2018) Microwave assisted synthesis of camellia oleifera shell-derived porous carbon with rich oxygen functionalities and superior supercapacitor performance. Appl Surf Sci 436:934–940. https://doi.org/10.1016/j.apsusc.2017.12.142

    Article  CAS  Google Scholar 

  28. Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43(4):786–795. https://doi.org/10.1016/j.carbon.2004.11.005

    Article  CAS  Google Scholar 

  29. Qiu D, Guo N, Gao A, Zheng L, Xu W, Li M, Wang F, Yang R (2019) Preparation of oxygen-enriched hierarchically porous carbon by KMnO4 one-pot oxidation and activation: mechanism and capacitive energy storage. Electrochim Acta 294:398–405. https://doi.org/10.1016/j.electacta.2018.10.049

    Article  CAS  Google Scholar 

  30. Miao L, Zhu D, Liu M, Duan H, Wang Z, Lv Y, Xiong W, Zhu Q, Li L, Chai X, Gan L (2018) Cooking carbon with protic salt: Nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors. Chem Eng J 347:233–242. https://doi.org/10.1016/j.cej.2018.04.116

    Article  CAS  Google Scholar 

  31. Huang G, Wang Y, Zhang T, Wu X, Cai J (2019) High-performance hierarchical N-doped porous carbons from hydrothermally carbonized bamboo shoot shells for symmetric supercapacitors. J Taiwan Inst Chem Eng 96:672–680. https://doi.org/10.1016/j.jtice.2018.12.024

    Article  CAS  Google Scholar 

  32. Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324. https://doi.org/10.1016/j.carbon.2015.05.056

    Article  CAS  Google Scholar 

  33. Zhao Y-Q, Lu M, Tao P-Y, Zhang Y-J, Gong X-T, Yang Z, Zhang G-Q, Li H-L (2016) Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J Power Sources 307:391–400. https://doi.org/10.1016/j.jpowsour.2016.01.020

    Article  CAS  Google Scholar 

  34. Jiang Y, Yan J, Wu X, Shan D, Zhou Q, Jiang L, Yang D, Fan Z (2016) Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors. J Power Sources 307:190–198. https://doi.org/10.1016/j.jpowsour.2015.12.081

    Article  CAS  Google Scholar 

  35. Huang W, Zhang H, Huang Y, Wang W, Wei S (2011) Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 49(3):838–843. https://doi.org/10.1016/j.carbon.2010.10.025

    Article  CAS  Google Scholar 

  36. Xie Q, Bao R, Zheng A, Zhang Y, Wu S, Xie C, Zhao P (2016) Sustainable low-cost green electrodes with high volumetric capacitance for aqueous symmetric supercapacitors with high energy density. ACS Sustain Chem Eng 4(3):1422–1430. https://doi.org/10.1021/acssuschemeng.5b01417

    Article  CAS  Google Scholar 

  37. Wang N, Wang C, He L, Wang Y, Hu W, Komarneni S (2019) Incomplete phase separation strategy to synthesize P/N co-doped porous carbon with interconnected structure for asymmetric supercapacitors with ultra-high power density. Electrochim Acta 298:717–725

    Article  CAS  Google Scholar 

  38. Lu X, Zhang Y, Zhong H, Yang L, Xu X, Liu H, Yuan C (2019) Molten-salt strategy for fabrication of hierarchical porous N-doped carbon nanosheets towards high-performance supercapacitors. Mater Chem Phys 230:178–186. https://doi.org/10.1016/j.matchemphys.2019.03.051

    Article  CAS  Google Scholar 

  39. Raymundo-Piñero E, Cazorla-Amorós D, Linares-Solano A, Find J, Wild U, Schlögl R (2002) Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin. Carbon 40(4):597–608

    Article  Google Scholar 

  40. Guo D, Xin R, Wang Y, Jiang W, Gao Q, Hu G, Fan M (2019) N-doped carbons with hierarchically micro- and mesoporous structure derived from sawdust for high performance supercapacitors. Microporous Mesoporous Mater 279:323–333. https://doi.org/10.1016/j.micromeso.2019.01.003

    Article  CAS  Google Scholar 

  41. Sun F, Gao J, Pi X, Wang L, Yang Y, Qu Z, Wu S (2017) High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. J Power Sources 337:189–196. https://doi.org/10.1016/j.jpowsour.2016.10.086

    Article  CAS  Google Scholar 

  42. Long C, Jiang L, Wu X, Jiang Y, Yang D, Wang C, Wei T, Fan Z (2015) Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon 93:412–420. https://doi.org/10.1016/j.carbon.2015.05.040

    Article  CAS  Google Scholar 

  43. Lin Y, Chen Z, Yu C, Zhong W (2019) Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors. ACS Sustain Chem Eng 7(3):3389–3403. https://doi.org/10.1021/acssuschemeng.8b05593

    Article  CAS  Google Scholar 

  44. Deng X, Zhao B, Zhu L, Shao Z (2015) Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon 93:48–58. https://doi.org/10.1016/j.carbon.2015.05.031

    Article  CAS  Google Scholar 

  45. Chen Z, Peng X, Zhang X, Jing S, Zhong L, Sun R (2017) Facile synthesis of cellulose-based carbon with tunable N content for potential supercapacitor application. Carbohydr Polym 170:107–116. https://doi.org/10.1016/j.carbpol.2017.04.063

    Article  CAS  Google Scholar 

  46. Long C, Zhuang J, Xiao Y, Zheng M, Hu H, Dong H, Lei B, Zhang H, Liu Y (2016) Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors. J Power Sources 310:145–153. https://doi.org/10.1016/j.jpowsour.2016.01.052

    Article  CAS  Google Scholar 

  47. Yu S, Liu Y-D, Li Y, Lin Y, Shen J, Zhang L, Li X-M, He T (2016) Preparation of hierarchical porous graphene nanosheets with high specific surface area and their electrochemical behaviors in supercapacitors. Mater Chem Phys 177:171–178

    Article  CAS  Google Scholar 

  48. Qu S, Wan J, Dai C, Jin T, Ma F (2018) Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. J Alloys Compd 751:107–116. https://doi.org/10.1016/j.jallcom.2018.04.123

    Article  CAS  Google Scholar 

  49. Pang J, Zhang W, Zhang H, Zhang J, Zhang H, Cao G, Han M, Yang Y (2018) Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon 132:280–293. https://doi.org/10.1016/j.carbon.2018.02.077

    Article  CAS  Google Scholar 

  50. Yan K, Kong L-B, Shen K-W, Dai Y-H, Shi M, Hu B, Luo Y-C, Kang L (2016) Facile preparation of nitrogen-doped hierarchical porous carbon with high performance in supercapacitors. Appl Surf Sci 364:850–861. https://doi.org/10.1016/j.apsusc.2015.12.193

    Article  CAS  Google Scholar 

  51. Han X, Jiang H, Zhou Y, Hong W, Zhou Y, Gao P, Ding R, Liu E (2018) A high performance nitrogen-doped porous activated carbon for supercapacitor derived from pueraria. J Alloys Compd 744:544–551. https://doi.org/10.1016/j.jallcom.2018.02.078

    Article  CAS  Google Scholar 

  52. Jiang L, Sheng L, Xu C, Tong W, Fan Z (2016) Construction of nitrogen-doped porous carbon building by interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. J Mater Chem A 4(29):11388–11396

    Article  CAS  Google Scholar 

  53. Wang D, Geng Z, Li B, Zhang C (2015) High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons. Electrochim Acta 173:377–384. https://doi.org/10.1016/j.electacta.2015.05.080

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XM was responsible for the main experimental design and manuscript writing; SJ participated in experimental design and manuscript modification; LM participated in part of the experimental operation; JW was involved in drawing figures; FW and ZS were responsible for experimental guidance and manuscript modification.

Corresponding authors

Correspondence to Feijun Wang or Ziqiang Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 777 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Jia, S., Mo, L. et al. O/N-co-doped hierarchically porous carbon from carboxymethyl cellulose ammonium for high-performance supercapacitors. J Mater Sci 55, 7417–7431 (2020). https://doi.org/10.1007/s10853-020-04515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04515-8

Navigation