Abstract
Cu–carbon nanotube (CNT) hybrids combine the advantages of the high electrical conductivity of Cu with the low temperature coefficient of resistance for CNTs, but require enhanced interfacing to improve the electrical performance when exposed to elevated temperatures. Herein, Ti and Ni were investigated as adhesion metals by thermally evaporating 10 nm layers onto a CNT conductor. SEM analysis shows Ni deposits as discrete nanoscale crystallites which coalesce after annealing to 400 °C in H2/Ar. Ti deposits uniformly along the CNT surface and is stable over such temperatures. A 100 nm deposition of Cu is shown to delaminate from the CNTs after annealing, and the resistance per length (R/L) increases by 40%. The Cu–Ni–CNT exhibits a 125% increase, while the Cu–Ti–CNT achieves a 12% decrease in R/L, for similar annealing conditions. Thus, Ti emerges as an effective adhesion metal, warranting its use in metal–CNT wire technologies for elevated temperature operation.
This is a preview of subscription content, access via your institution.









References
Jarosz P, Schauerman C, Alvarenga J et al (2011) Carbon nanotube wires and cables: near-term applications and future perspectives. Nanoscale 3:4542–4553. https://doi.org/10.1039/c1nr10814j
Buldum A, Lu JP (2001) Contact resistance between carbon nanotubes. Phys Rev B Condens Matter Mater Phys 63:1–4. https://doi.org/10.1103/PhysRevB.63.161403
Garrett MP, Ivanov IN, Gerhardt RA et al (2010) Separation of junction and bundle resistance in single wall carbon nanotube percolation networks by impedance spectroscopy. Appl Phys Lett. https://doi.org/10.1063/1.3490650
Downes RD, Hao A, Park JG et al (2015) Geometrically constrained self-assembly and crystal packing of flattened and aligned carbon nanotubes. Carbon 93:953–966. https://doi.org/10.1016/j.carbon.2015.06.012
Alvarenga J, Jarosz PR, Schauerman CM et al (2010) High conductivity carbon nanotube wires from radial densification and ionic doping. Appl Phys Lett. https://doi.org/10.1063/1.3506703
Zhao Y, Wei J, Vajtai R et al (2011) Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci Rep 1:1–5. https://doi.org/10.1038/srep00083
Janas D, Milowska KZ, Bristowe PD, Koziol KKK (2017) Improving the electrical properties of carbon nanotubes with interhalogen compounds. Nanoscale 9:3212–3221. https://doi.org/10.1039/c7nr00224f
Puchades I, Lawlor CC, Schauerman CM et al (2014) Mechanism of chemical doping in electronic-type-separated single wall carbon nanotubes towards high electrical conductivity. J Mater Chem C 2:4904–4908. https://doi.org/10.1039/c4tc00699b
Cress CD, Ganter MJ, Schauerman CM et al (2017) Carbon nanotube wires with continuous current rating exceeding 20 amperes. J Appl Phys. https://doi.org/10.1063/1.4990981
Li S, Zhang X, Zhao J et al (2012) Enhancement of carbon nanotube fibres using different solvents and polymers. Compos Sci Technol 72:1402–1407. https://doi.org/10.1016/j.compscitech.2012.05.013
Liu P, Hu DCM, Tran TQ et al (2016) Electrical property enhancement of carbon nanotube fibers from post treatments. Colloids Surf A Physicochem Eng Asp 509:384–389. https://doi.org/10.1016/j.colsurfa.2016.09.036
Di J, Fang S, Moura FA et al (2016) Strong, twist-stable carbon nanotube yarns and muscles by tension annealing at extreme temperatures. Adv Mater 28:6598–6605
Leggiero AP, Trettner KJ, Ursino HL et al (2018) High conductivity copper–carbon nanotube hybrids via site-specific chemical vapor deposition. ACS Appl Nano Mater 2:118–126. https://doi.org/10.1021/acsanm.8b01740
Subramaniam C, Sekiguchi A, Yamada T et al (2016) Nano-scale, planar and multi-tiered current pathways from a carbon nanotube–copper composite with high conductivity, ampacity and stability. Nanoscale 8:3888–3894. https://doi.org/10.1039/C5NR03762J
Subramaniam C, Yamada T, Kobashi K et al (2013) One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms3202
Han B, Guo E, Xue X et al (2017) Fabrication and densification of high performance carbon nanotube/copper composite fibers. Carbon 123:593–604. https://doi.org/10.1016/j.carbon.2017.08.004
Zou J, Liu D, Zhao J et al (2018) Ni nanobuffer layer provides light-weight CNT/Cu fibers with superior robustness, conductivity, and ampacity. ACS Appl Mater Interfaces 10:8197–8204. https://doi.org/10.1021/acsami.7b19012
Milowska KZ, Ghorbani-Asl M, Burda M et al (2017) Breaking the electrical barrier between copper and carbon nanotubes. Nanoscale 9:8458–8469. https://doi.org/10.1039/C7NR02142A
Zhang Y, Franklin NW, Chen RJ, Dai H (2000) Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem Phys Lett 331:35–41. https://doi.org/10.1016/S0009-2614(00)01162-3
Dileo RA, Castiglia A, Ganter MJ et al (2010) Enhanced capacity and rate capability of carbon nanotube based anodes with batteries. ACS Nano 4:6121–6131
Menon M, Andriotis AN, Froudakis GE (2000) Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls. Chem Phys Lett 320:425–434. https://doi.org/10.1016/S0009-2614(00)00224-4
Yang CK, Zhao J, Lu JP (2002) Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes. Phys Rev B Condens Matter Mater Phys 66:414031–414034. https://doi.org/10.1103/PhysRevB.66.041403
Uh HS, Park S, Kim B (2010) Enhanced field emission properties from titanium-coated carbon nanotubes. Diam Relat Mater 19:586–589. https://doi.org/10.1016/j.diamond.2009.11.021
Srividya S, Gautam S, Jha P et al (2010) Titanium buffer layer for improved field emission of CNT based cold cathode. Appl Surf Sci 256:3563–3566. https://doi.org/10.1016/j.apsusc.2009.12.155
Chu K, Jia CC, Li WS, Wang P (2013) Mechanical and electrical properties of carbon-nanotube-reinforced Cu–Ti alloy matrix composites. Phys Status Solidi Appl Mater Sci 210:594–599. https://doi.org/10.1002/pssa.201228549
Ta BQ, Ngo AV, Nilsen O et al (2013) Deposition of palladium on suspended and locally grown carbon nanotubes using thermal evaporation. In: 2013 13th IEEE Conference on Nanotechnology, pp 1176–1179
Gingery D, Bühlmann P (2008) Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation. Carbon 46:1966–1972. https://doi.org/10.1016/j.carbon.2008.08.007
Cox ND, Rape A, Pham M et al (2016) Free-standing silver/carbon nanotube metal matrix composite thin films. J Mater Sci 51:10935–10942. https://doi.org/10.1007/s10853-016-0305-x
Scarselli M, Camilli L, Castrucci P et al (2012) In situ formation of noble metal nanoparticles on multiwalled carbon nanotubes and its implication in metal-nanotube interactions. Carbon 50:875–884. https://doi.org/10.1016/j.carbon.2011.09.048
Janas D, Koziol KKK (2016) The influence of metal nanoparticles on electrical properties of carbon nanotubes. Appl Surf Sci 376:74–78. https://doi.org/10.1016/j.apsusc.2016.02.233
Muratore C, Reed AN, Bultman JE et al (2013) Nanoparticle decoration of carbon nanotubes by sputtering. Carbon 57:274–281. https://doi.org/10.1016/j.carbon.2013.01.074
Han B, Guo E, Xue X et al (2018) Fabricating and strengthening the carbon nanotube/copper composite fibers with high strength and high electrical conductivity. Appl Surf Sci 441:984–992. https://doi.org/10.1016/j.apsusc.2018.02.078
Nanocomp Technologies, INC. A Huntsman Company. http://www.miralon.com/. Accessed 6 Nov 2019
Simoes S, Calinas R, Vieira MT et al (2010) In situ TEM study of grain growth in nanocrystalline copper thin films. Nanotechnology. https://doi.org/10.1088/0957-4484/21/14/145701
Shibuta Y, Suzuki T (2010) Melting and solidification point of fcc-metal nanoparticles with respect to particle size: a molecular dynamics study. Chem Phys Lett 498:323–327. https://doi.org/10.1016/j.cplett.2010.08.082
Chopra KL (1969) Thin film phenomena. McGraw-Hill, New York
Carey JD, Ong LL, Silva SRP (2003) Formation of low-temperature self-organized nanoscale nickel metal islands. Nanotechnology 14:1223–1227. https://doi.org/10.1088/0957-4484/14/11/011
Sundaram R, Yamada T, Hata K, Sekiguchi A (2017) Electrical performance of lightweight CNT–Cu composite wires impacted by surface and internal Cu spatial distribution. Sci Rep. https://doi.org/10.1038/s41598-017-09279-x
Kaiser AB (2001) Electronic transport properties of conducting polymers and carbon nanotubes. Rep Prog Phys 64:1–49
Barnes TM, Blackburn JL, Van De Lagemaat J et al (2008) Reversibility, dopant desorption, and tunneling in the temperature-dependent conductivity of type-separated, conductive carbon nanotube networks. ACS Nano 2:1968–1976. https://doi.org/10.1021/nn800194u
Colasanti S, Robbiano V, Loghin FC et al (2016) Experimental and computational study on the temperature behavior of CNT networks. IEEE Trans Nanotechnol 15:171–178. https://doi.org/10.1109/TNANO.2015.2510965
Roch A, Greifzu M, Talens ER et al (2015) Ambient effects on the electrical conductivity of carbon nanotubes. Carbon 95:347–353. https://doi.org/10.1016/j.carbon.2015.08.045
Kasap SO (2006) Principles of electronic materials and devices, 3rd edn. McGraw-Hill, New York
Sung CM, Tai MF (1997) Reactivities of transition metals with carbon: implications to the mechanism of diamond synthesis under high pressure. Int J Refract Met Hard Mater 15:237–256. https://doi.org/10.1016/S0263-4368(97)00003-6
Lim SC, Jang JH, Bae DJ et al (2010) Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl Phys Lett 95:264103. https://doi.org/10.1063/1.3255016
Durgun E, Dag S, Bagci VMK et al (2003) Systematic study of adsorption of single atoms on a carbon nanotube. Phys Rev B Condens Matter Mater Phys 67:1–4. https://doi.org/10.1103/PhysRevB.67.201401
Zhang Y, Dai H (2000) Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl Phys Lett 77:3015–3017. https://doi.org/10.1063/1.1324731
Zhao J, Qiu Q, Wang B et al (2001) Geometric and electronic properties of titanium clusters studied by ultrasoft pseudopotential. Solid State Commun 118:157–161. https://doi.org/10.1016/S0038-1098(01)00044-8
Yi C, Bagchi S, Dmuchowski CM et al (2018) Direct nanomechanical characterization of carbon nanotube–titanium interfaces. Carbon 132:548–555. https://doi.org/10.1016/j.carbon.2018.02.069
Ahmad HM, Greig D (1974) The electrical resistivity and thermopower of nickel–copper alloys. Le J Phys Colloq 35:C4-223–C4-226. https://doi.org/10.1051/jphyscol:1974440
Bakonyi I, Tóth-Kadar E, Tóth J et al (1999) Magnetic and electrical transport properties of electrodeposited Ni–Cu alloys and multilayers. J Phys Condens Matter 11:963–973. https://doi.org/10.1088/0953-8984/11/4/004
Liang LH, Liu D, Jiang Q (2003) Size-dependent continuous binary solution phase diagram. Nanotechnology 14:438–442. https://doi.org/10.1088/0957-4484/14/4/306
Acknowledgements
The authors acknowledge funding from the Advanced Manufacturing Office of the Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy under Grant DE-EE0007863. The contents of this document should not be construed as asserting or implying U.S. Government authentication of information or endorsement of the authors’ views.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
McIntyre, D.J., Hirschman, R.K., Puchades, I. et al. Enhanced copper–carbon nanotube hybrid conductors with titanium adhesion layer. J Mater Sci 55, 6610–6622 (2020). https://doi.org/10.1007/s10853-020-04457-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-020-04457-1