Skip to main content
Log in

Effect of Al2O3 coating thickness on the thermal stability of Cu–carbon nanotube hybrids

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Hybrids of carbon nanotube and metals have been regarded as promising candidate for flexible circuit, where thermal stability of nanograined metals is a challenging issue. In this study, we find thermal stability of Cu layer in CNT–Cu hybrids can be improved by coating Al2O3 layer. As for CNT–Cu hybrids, Cu nanograins are agglomerated during 673 K annealing. In contrast, the agglomeration of CNT–Cu hybrids can be suppressed after coating Al2O3 layer, and exhibit a thickness-dependent thermal stability after annealing at higher temperature. The underlying mechanism might be the compressive stress applied by Al2O3 coatings and inhibited diffusion along Cu/Al2O3 interfaces.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Analyzed and raw data relevant to this study are available from the corresponding author upon reasonable requests.

References

  1. C. Guiderdoni, E. Pavlenko, V. Turq, A. Weibel, P. Puech, C. Estournès, A. Peigney, W. Bacsa, C. Laurent, Carbon (2013). https://doi.org/10.1016/j.carbon.2013.02.049

    Article  Google Scholar 

  2. S.S. Hamedan, M. Abdi, S. Sheibani, Trans. Nonferr. Met. Soc. China (2018). https://doi.org/10.1016/s1003-6326(18)64848-4

    Article  Google Scholar 

  3. S.B. Menzel, J. Thomas, U. Weißker, F. Schäffel, C. Hoßbach, M. Albert, S. Hampel, T. Gemming, J. Nanosci. Nanotechnol. (2009). https://doi.org/10.1166/jnn.2009.1574

    Article  PubMed  Google Scholar 

  4. P. Mao, J. Qiao, Y. Zhao, S. Jiang, K. Cui, J. Qiu, K. Tai, J. Tan, C. Liu, Carbon (2021). https://doi.org/10.1016/j.carbon.2020.10.080

    Article  Google Scholar 

  5. G. Chai, Y. Sun, J.J. Sun, Q. Chen, J. Micromech. Microeng. (2008). https://doi.org/10.1088/0960-1317/18/3/035013

    Article  Google Scholar 

  6. M. Saber, H. Kotan, C.C. Koch, R.O. Scattergood, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4791704

    Article  Google Scholar 

  7. Z. Li, Y. Zhang, Z. Zhang, Y. Cui, Q. Guo, P. Liu, S. Jin, G. Sha, K. Ding, Z. Li, T. Fan, H.M. Urbassek, Q. Yu, T. Zhu, D. Zhang, Y.M. Wang, Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-33261-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Y. Du, L. Li, J.M. Pureza, Y.W. Chung, K.G. Pradeep, S. Sen, J. Schneider, Surf. Coat. Technol. (2019). https://doi.org/10.1016/j.surfcoat.2018.10.069

    Article  Google Scholar 

  9. G. Csiszár, S.J.B. Kurz, E.J. Mittemeijer, Acta Mater. (2016). https://doi.org/10.1016/j.actamat.2016.02.068

    Article  Google Scholar 

  10. J.T. Zhao, J.Y. Zhang, Z.Q. Hou, K. Wu, X.B. Feng, G. Liu, J. Sun, Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aab19a

    Article  PubMed  Google Scholar 

  11. J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science (2017). https://doi.org/10.1126/science.aal5166

    Article  PubMed  PubMed Central  Google Scholar 

  12. X. Li, K. Lu, Science (2019). https://doi.org/10.1126/science.aaw9905

    Article  PubMed  PubMed Central  Google Scholar 

  13. X. Zhou, X.Y. Li, K. Lu, Science (2018). https://doi.org/10.1126/science.aar6941

    Article  PubMed  PubMed Central  Google Scholar 

  14. B. Wu, H. Fu, X. Zhou, L. Qian, J. Luo, J. Zhu, W.B. Lee, X. Yang, Mater. Sci. Eng. A (2021). https://doi.org/10.1016/j.msea.2021.141495

    Article  Google Scholar 

  15. L. Qian, B. Wu, H. Fu, W. Yang, W. Sun, X. Zhou, K.C. Chan, X. Yang, Mater. Sci. Eng. A (2022). https://doi.org/10.1016/j.msea.2022.143912

    Article  Google Scholar 

  16. G.F. You, H. Gong, J.T. Thong, Nanotechnology (2010). https://doi.org/10.1088/0957-4484/21/19/195701

    Article  PubMed  Google Scholar 

  17. Y. Zhu, S. Kim, X. Ma, P. Byrley, N. Yu, Q. Liu, X. Sun, D. Xu, S. Peng, M.C. Hartel, S. Zhang, V. Jucaud, M.R. Dokmeci, A. Khademhosseini, R. Yan, Nano Res. (2021). https://doi.org/10.1007/s12274-021-3718-z

    Article  PubMed  PubMed Central  Google Scholar 

  18. Y. Fang, X. Zeng, Y. Chen, M. Ji, H. Zheng, W. Xu, D. Peng, Nanotechnology (2020). https://doi.org/10.1088/1361-6528/ab925c

    Article  PubMed  Google Scholar 

  19. S. Ji, W. Kim, Int. J. Precis. Eng. Manuf. (2022). https://doi.org/10.1007/s12541-022-00628-z

    Article  Google Scholar 

  20. N. Heikkinen, L. Keskiväli, P. Eskelinen, M. Reinikainen, M. Putkonen, Catalysts (2021). https://doi.org/10.3390/catal11060672

    Article  Google Scholar 

  21. M. Zhang, J. Chen, W. Xuan, X. Song, H. Xu, J. Zhang, J. Wu, H. Jin, S. Dong, J. Luo, J. Mater. Res. Technol. (2021). https://doi.org/10.1016/j.jmrt.2021.10.081

    Article  Google Scholar 

  22. S. Jiang, P.X. Hou, M.L. Chen, B.W. Wang, D.M. Sun, D.M. Tang, Q. Jin, Q.X. Guo, D.D. Zhang, J.H. Du, K.P. Tai, J. Tan, E.I. Kauppinen, C. Liu, H.M. Cheng, Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aap9264

    Article  PubMed  PubMed Central  Google Scholar 

  23. H. Lu, Y. Li, M. Xu, S. Ding, L. Sun, W. Zhang, L. Wang, Chin. Phys. Lett. (2006). https://doi.org/10.1088/0256-307X/23/7/075

    Article  Google Scholar 

  24. T.J. Rupert, Curr. Opin. Solid State Mater. Sci. (2016). https://doi.org/10.1016/j.cossms.2016.05.005

    Article  Google Scholar 

  25. Y. Jiang, X. Zhou, X.Y. Li, K. Lu, Acta Mater. (2023). https://doi.org/10.1016/j.actamat.2023.119134

    Article  Google Scholar 

  26. Y. Zhang, N.W. Franklin, R.J. Chen, H. Dai, Chem. Phys. Lett. (2000). https://doi.org/10.1016/s0009-2614(00)01162-3

    Article  Google Scholar 

  27. G.J. Wang, Y.J. Ma, Y.P. Cai, Z.H. Cao, X.K. Meng, Carbon (2019). https://doi.org/10.1016/j.carbon.2019.01.111

    Article  Google Scholar 

  28. W.W. Mullins, J. Appl. Phys. (1957). https://doi.org/10.1063/1.1722742

    Article  Google Scholar 

  29. R. Sundaram, T. Yamada, K. Hata, A. Sekiguchi, J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.03.094

    Article  Google Scholar 

  30. D.C. Miller, R.R. Foster, S. Jen, J.A. Bertrand, S.J. Cunningham, A.S. Morris, Y. Lee, S.M. George, M.L. Dunn, Sens. Actuators A (2010). https://doi.org/10.1016/j.sna.2010.09.018

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Youth Innovation Promotion Association of the Chinese Academy of Sciences, the Postdoctoral Scientific Research Foundation of Shenyang Ligong University, the Doctoral Research Foundation Project of Liaoning Science and Technology Department (Grants 2022-BS-184, 2023-BS-129), the High-Level Talent Research Support Program of Shenyang Ligong University (Grants 1010147001266, 1010147001106), the Basic Scientific Research Project of Liaoning Provincial Department of Education (Grants JYTQN2023052, LJKQZ20222278, and LJKFZ20220185).

Funding

This study was supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences, the Postdoctoral Scientific Research Foundation of Shenyang Ligong University, the Doctoral Research Foundation Project of Liaoning Science and Technology Department (Grants 2022-BS-184, 2023-BS-129), the High-Level Talent Research Support Program of Shenyang Ligong University (Grants 1010147001266, 1010147001106), the Basic Scientific Research Project of Liaoning Provincial Department of Education (Grants JYTQN2023052, LJKQZ20222278, and LJKFZ20220185).

Author information

Authors and Affiliations

Authors

Contributions

Pengyan Mao: Conceptualization, Methodology, Formal analysis, Investigation, Validation, Data curation, and Writing—original draft. Ruochen Zhang: Methodology, Validation, and Data curation. Shaohu Tao: Conceptualization and Formal analysis. Hui Zhao: Methodology, Investigation, and Formal analysis. Hongda Li: Conceptualization, Formal analysis, and Data curation. Zhao Cheng: Conceptualization, Methodology, Formal analysis, Data curation, Investigation, Validation, and Writing—review and editing.

Corresponding authors

Correspondence to Pengyan Mao or Zhao Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, P., Zhang, R., Tao, S. et al. Effect of Al2O3 coating thickness on the thermal stability of Cu–carbon nanotube hybrids. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00533-8

Keywords

Navigation