Skip to main content

Advertisement

Log in

Electrospun polyimide nonwovens with enhanced mechanical and thermal properties by addition of trace plasticizer

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrospun polyimide (PI) nanofiber nonwovens with excellent mechanical and thermal performance are highly required in many applications. The addition of phosphorus-containing compounds could be used as plasticizer to achieve this purpose. Herein, different amounts of trace diphenyl phosphate (DPhP) as plasticizer are added into the PI’s precursor for electrospinning. After imidization, phosphorous-containing electrospun PI nonwovens (PI-PX) are produced. The results indicate that the addition of DPhP significantly enhanced the thermal and mechanical properties of PI-PX. PI-P0.6 (0.6 wt% DPhP) shows a T5% of 510 °C in air and 561 °C in Ar, 29 °C and 40 °C higher than those of pure PI. PI-P0.6 also shows the highest tensile strength/modulus/toughness of 44 MPa/2.0 GPa/8.5 MPa, 208 MPa/9.7 GPa/40.7 MPa, and 123 MPa/3.3 GPa/25.1 MPa, respectively, when applying different thickness determinations. In addition, PI-P0.6 also exhibited much higher puncture strength than other Li-ion battery separators. Such PI-PX composite nonwovens would be good candidates for various applications, especially for Li-ion battery separators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119(8):5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  Google Scholar 

  2. Park JH, Rutledge GC (2017) 50th anniversary perspective: advanced polymer fibers: high performance and ultrafine. Macromolecules 50(15):5627–5642. https://doi.org/10.1021/acs.macromol.7b00864

    Article  CAS  Google Scholar 

  3. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703

    Article  CAS  Google Scholar 

  4. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621

    Article  CAS  Google Scholar 

  5. Fridrikh SV, Yu JH, Brenner MP, Rutledge GC (2003) Controlling the fiber diameter during electrospinning. Phys Rev Lett 90(14):144502. https://doi.org/10.1103/PhysRevLett.90.144502

    Article  CAS  Google Scholar 

  6. Jian S, Zhu J, Jiang S, Chen S, Fang H, Song Y, Duan G, Zhang Y, Hou H (2018) Nanofibers with diameter below one nanometer from electrospinning. RSC Adv 8(9):4794–4802. https://doi.org/10.1039/C7RA13444D

    Article  CAS  Google Scholar 

  7. Rutledge GC, Fridrikh SV (2007) Formation of fibers by electrospinning. Adv Drug Del Rev 59(14):1384–1391. https://doi.org/10.1016/j.addr.2007.04.020

    Article  CAS  Google Scholar 

  8. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38(6):963–991

    Article  CAS  Google Scholar 

  9. Jiang S, Agarwal S, Greiner A (2017) Low-density open cellular sponges as functional materials. Angew Chem Int Ed 56(49):15520–15538

    Article  CAS  Google Scholar 

  10. Jiang S, Uch B, Agarwal S, Greiner A (2017) Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl Mater Interfaces 9(37):32308–32315

    Article  CAS  Google Scholar 

  11. Miao Y-E, Zhu G-N, Hou H, Xia Y-Y, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86. https://doi.org/10.1016/j.jpowsour.2012.10.027

    Article  CAS  Google Scholar 

  12. Zhang T-W, Tian T, Shen B, Song Y-H, Yao H-B (2019) Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos Commun 14:7–14. https://doi.org/10.1016/j.coco.2019.05.003

    Article  CAS  Google Scholar 

  13. Xu Y, Yuan T, Bian Z, Sun H, Pang Y, Peng C, Yang J, Zheng S (2019) Electrospun flexible si/c@cnf nonwoven anode for high capacity and durable lithium-ion battery. Compos Commun 11:1–5. https://doi.org/10.1016/j.coco.2018.10.012

    Article  Google Scholar 

  14. Sun G, Dong G, Kong L, Yan X, Tian G, Qi S, Wu D (2018) Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator. Nanoscale 10(47):22439–22447. https://doi.org/10.1039/C8NR07548D

    Article  CAS  Google Scholar 

  15. Kong L, Yan Y, Qiu Z, Zhou Z, Hu J (2018) Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries. J Membr Sci 549:321–331. https://doi.org/10.1016/j.memsci.2017.12.028

    Article  CAS  Google Scholar 

  16. Chen W, Liu Y, Ma Y, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135. https://doi.org/10.1016/j.jpowsour.2014.10.026

    Article  CAS  Google Scholar 

  17. Sun G, Kong L, Liu B, Niu H, Zhang M, Tian G, Qi S, Wu D (2019) Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries. J Membr Sci 582:132–139. https://doi.org/10.1016/j.memsci.2019.04.005

    Article  CAS  Google Scholar 

  18. Lv D, Wang R, Tang G, Mou Z, Lei J, Han J, De Smedt S, Xiong R, Huang C (2019) Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl Mater Interfaces 11(13):12880–12889. https://doi.org/10.1021/acsami.9b01508

    Article  CAS  Google Scholar 

  19. Zhu M, Han J, Wang F, Shao W, Xiong R, Zhang Q, Pan H, Yang Y, Samal SK, Zhang F, Huang C (2017) Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng 302(1):1600353. https://doi.org/10.1002/mame.201600353

    Article  CAS  Google Scholar 

  20. Lv D, Zhu M, Jiang Z, Jiang S, Zhang Q, Xiong R, Huang C (2018) Green electrospun nanofibers and their application in air filtration. Macromol Mater Eng 303(12):1800336. https://doi.org/10.1002/mame.201800336

    Article  CAS  Google Scholar 

  21. Agarwal S, Jiang S, Chen Y (2019) Progress in the field of water-and/or temperature-triggered polymer actuators. Macromol Mater Eng 304(2):1800548

    Article  Google Scholar 

  22. Liu L, Bakhshi H, Jiang S, Schmalz H, Agarwal S (2018) Composite polymeric membranes with directionally embedded fibers for controlled dual actuation. Macromol Rapid Commun 39(10):1800082. https://doi.org/10.1002/marc.201800082

    Article  CAS  Google Scholar 

  23. Jiang S, Helfricht N, Papastavrou G, Greiner A, Agarwal S (2018) Low-density self-assembled poly (n-isopropyl acrylamide) sponges with ultrahigh and extremely fast water uptake and release. Macromol Rapid Commun 39(8):1700838

    Article  Google Scholar 

  24. Molnar K, Jedlovszky-Hajdu A, Zrinyi M, Jiang S, Agarwal S (2017) Poly(amino acid)-based gel fibers with ph responsivity by coaxial reactive electrospinning. Macromol Rapid Commun 38(14):1700147

    Article  Google Scholar 

  25. Lei Y, Wang Q, Peng S, Ramakrishna S, Zhang D, Zhou K (2020) Electrospun inorganic nanofibers for oxygen electrocatalysis: design, fabrication and progress. Adv Energy Mater. https://doi.org/10.1002/aenm.201902115

    Article  Google Scholar 

  26. Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241. https://doi.org/10.1016/j.mattod.2013.06.005

    Article  CAS  Google Scholar 

  27. Liu X, Wei D, Zhong J, Ma M, Zhou J, Peng X, Ye Y, Sun G, He D (2015) Electrospun nanofibrous P(DLLA-CL) balloons as calcium phosphate cement filled containers for bone repair: in vitro and in vivo studies. ACS Appl Mater Interfaces 7(33):18540–18552. https://doi.org/10.1021/acsami.5b04868

    Article  CAS  Google Scholar 

  28. Sun G, Wei D, Liu X, Chen Y, Li M, He D, Zhong J (2013) Novel biodegradable electrospun nanofibrous P(DLLA-CL) balloons for the treatment of vertebral compression fractures. Nanomed Nanotechnol Biol Med 9(6):829–838. https://doi.org/10.1016/j.nano.2012.12.003

    Article  CAS  Google Scholar 

  29. Hua D, Liu Z, Wang F, Gao B, Chen F, Zhang Q, Xiong R, Han J, Samal SK, De Smedt SC, Huang C (2016) Ph responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery. Carbohydr Polym 151:1240–1244. https://doi.org/10.1016/j.carbpol.2016.06.066

    Article  CAS  Google Scholar 

  30. Duan G, Bagheri AR, Jiang S, Golenser J, Agarwal S, Greiner A (2017) Exploration of macroporous polymeric sponges as drug carriers. Biomacromol 18(10):3215–3221. https://doi.org/10.1021/acs.biomac.7b00852

    Article  CAS  Google Scholar 

  31. Liu Y, Jia J, Li YV, Hao J, Pan K (2018) Novel ZnO/NiO Janus-like nanofibers for effective photocatalytic degradation. Nanotechnology 29(43):435704. https://doi.org/10.1088/1361-6528/aad9c9

    Article  CAS  Google Scholar 

  32. Ni Y, Yan K, Xu F, Zhong W, Zhao Q, Liu K, Yan K, Wang D (2019) Synergistic effect on TiO2 doped poly (vinyl alcohol-co-ethylene) nanofibrous film for filtration and photocatalytic degradation of methylene blue. Compos Commun 12:112–116. https://doi.org/10.1016/j.coco.2019.01.007

    Article  Google Scholar 

  33. Jiang S, Chen Y, Duan G, Mei C, Greiner A, Agarwal S (2018) Electrospun nanofiber reinforced composites: a review. Polym Chem 9:2685–2720. https://doi.org/10.1039/C8PY00378E

    Article  CAS  Google Scholar 

  34. Yang X, Guo Y, Han Y, Li Y, Ma T, Chen M, Kong J, Zhu J, Gu J (2019) Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Compos B 175:107070. https://doi.org/10.1016/j.compositesb.2019.107070

    Article  CAS  Google Scholar 

  35. Zhang N, Qiao R, Su J, Yan J, Xie Z, Qiao Y, Wang X, Zhong J (2017) Recent advances of electrospun nanofibrous membranes in the development of chemosensors for heavy metal detection. Small 13(16):1604293. https://doi.org/10.1002/smll.201604293

    Article  CAS  Google Scholar 

  36. Zhao R, Lu X, Wang C (2018) Electrospinning based all-nano composite materials: recent achievements and perspectives. Compos Commun 10:140–150. https://doi.org/10.1016/j.coco.2018.09.005

    Article  Google Scholar 

  37. Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S, Zhang Q, Huang C (2019) Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 7(5):709–729. https://doi.org/10.1039/C8TB02491J

    Article  CAS  Google Scholar 

  38. Liu H, Mukherjee S, Liu Y, Ramakrishna S (2018) Recent studies on electrospinning preparation of patterned, core–shell, and aligned scaffolds. J Appl Polym Sci 135(31):46570. https://doi.org/10.1002/app.46570

    Article  CAS  Google Scholar 

  39. Qin Z, Yin Y, Zhang W, Li C, Pan K (2019) Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes. ACS Appl Mater Interfaces 11(13):12452–12459. https://doi.org/10.1021/acsami.8b21487

    Article  CAS  Google Scholar 

  40. Cheon S, Kang H, Kim H, Son Y, Lee JY, Shin H-J, Kim S-W, Cho JH (2018) High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride–silver nanowire composite nanofibers. Adv Funct Mater 28(2):1703778. https://doi.org/10.1002/adfm.201703778

    Article  CAS  Google Scholar 

  41. Hou H, Xu W, Ding Y (2018) The recent progress on high-performance polymer nanofibers by electrospinning. J Jiangxi Normal Univ (Nat Sci) 42(6):551–564. https://doi.org/10.1039/C6TA10474F

    Article  CAS  Google Scholar 

  42. Ding Y, Hou H, Zhao Y, Zhu Z, Fong H (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103. https://doi.org/10.1016/j.progpolymsci.2016.06.006

    Article  CAS  Google Scholar 

  43. Yang H, Jiang S, Fang H, Hu X, Duan G, Hou H (2018) Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 200:339–344. https://doi.org/10.1016/j.saa.2018.04.045

    Article  CAS  Google Scholar 

  44. Xu H, Jiang S, Ding C, Zhu Y, Li J, Hou H (2017) High strength and high breaking load of single electrospun polyimide microfiber from water soluble precursor. Mater Lett 201:82–84

    Article  CAS  Google Scholar 

  45. Jiang S, Han D, Huang C, Duan G, Hou H (2018) Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Mater Lett 216:81–83

    Article  CAS  Google Scholar 

  46. Liu J, Liu Y, Yang W, Ren Q, Li F, Huang Z (2018) Lithium ion battery separator with high performance and high safety enabled by tri-layered SiO2@PI/m-PE/SiO2@PI nanofiber composite membrane. J Power Sources 396:265–275. https://doi.org/10.1016/j.jpowsour.2018.06.008

    Article  CAS  Google Scholar 

  47. Cai M, Zhu J, Yang C, Gao R, Shi C, Zhao J (2019) A parallel bicomponent TPU/PI membrane with mechanical strength enhanced isotropic interfaces used as polymer electrolyte for lithium-ion battery. Polymers 11(1):185

    Article  Google Scholar 

  48. Hao Z, Wu J, Wang C, Liu J (2019) Electrospun polyimide/metal-organic framework nanofibrous membrane with superior thermal stability for efficient PM2.5 capture. ACS Appl Mater Interfaces 11(12):11904–11909. https://doi.org/10.1021/acsami.8b22415

    Article  CAS  Google Scholar 

  49. Jiang S, Hou H, Agarwal S, Greiner A (2016) Polyimide nanofibers by “green” electrospinning via aqueous solution for filtration applications. ACS Sustain Chem Eng 4(9):4797–4804. https://doi.org/10.1021/acssuschemeng.6b01031

    Article  CAS  Google Scholar 

  50. Jiang W, Liu Z, Kong Q, Yao J, Zhang C, Han P, Cui G (2013) A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics 232:44–48. https://doi.org/10.1016/j.ssi.2012.11.010

    Article  CAS  Google Scholar 

  51. Cao L, An P, Xu Z, Huang J (2016) Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J Electroanal Chem 767:34–39. https://doi.org/10.1016/j.jelechem.2016.01.041

    Article  CAS  Google Scholar 

  52. Chung GS, Jo SM, Kim BC (2005) Properties of carbon nanofibers prepared from electrospun polyimide. J Appl Polym Sci 97(1):165–170. https://doi.org/10.1002/app.21742

    Article  CAS  Google Scholar 

  53. Liu J, Huang J, Wujcik EK, Qiu B, Rutman D, Zhang X, Salazard E, Wei S, Guo Z (2015) Hydrophobic electrospun polyimide nanofibers for self-cleaning materials. Macromol Mater Eng 300(3):358–368. https://doi.org/10.1002/mame.201400307

    Article  CAS  Google Scholar 

  54. Yao K, Chen J, Li P, Duan G, Hou H (2019) Robust strong electrospun polyimide composite nanofibers from a ternary polyamic acid blend. Compos Commun 15:92–95. https://doi.org/10.1016/j.coco.2019.07.001

    Article  Google Scholar 

  55. Duan G, Liu S, Jiang S, Hou H (2019) High-performance polyamide-imide films and electrospun aligned nanofibers from an amide-containing diamine. J Mater Sci 54(8):6719–6727. https://doi.org/10.1007/s10853-019-03326-w

    Article  CAS  Google Scholar 

  56. Jian S, Ding C, Yang T, Zhang C, Hou H (2018) Effect of trace diphenyl phosphate on mechanical and thermal performance of polyimide composite films. Compos Commun 7:42–46. https://doi.org/10.1016/j.coco.2017.12.009

    Article  Google Scholar 

  57. Yao J, Pantano MF, Pugno NM, Bastiaansen CWM, Peijs T (2015) High-performance electrospun co-polyimide nanofibers. Polymer 76:105–112. https://doi.org/10.1016/j.polymer.2015.08.053

    Article  CAS  Google Scholar 

  58. Jiang Y, Yan P, Wang Y, Zhou C, Lei J (2018) Form-stable phase change materials with enhanced thermal stability and fire resistance via the incorporation of phosphorus and silicon. Mater Des 160:763–771. https://doi.org/10.1016/j.matdes.2018.10.020

    Article  CAS  Google Scholar 

  59. Xu W-Z, Xu B-L, Wang G-S, Wang X-L, Liu L (2017) Synergistic effect of expandable graphite and α-type zirconium phosphate on flame retardancy of polyurethane elastomer. J Appl Polym Sci 134(32):45188. https://doi.org/10.1002/app.45188

    Article  CAS  Google Scholar 

  60. Sun Z, Hou Y, Hu Y, Hu W (2018) Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin. Mater Chem Phys 214:154–164. https://doi.org/10.1016/j.matchemphys.2018.04.065

    Article  CAS  Google Scholar 

  61. Zhang Y-C, Xu G-L, Liang Y, Yang J, Hu J (2016) Preparation of flame retarded epoxy resins containing dopo group. Thermochim Acta 643:33–40. https://doi.org/10.1016/j.tca.2016.09.015

    Article  CAS  Google Scholar 

  62. Liu K, Li Y, Tao L, Xiao R (2018) Preparation and characterization of polyamide 6 fibre based on a phosphorus-containing flame retardant. RSC Adv 8(17):9261–9271. https://doi.org/10.1039/C7RA13228J

    Article  CAS  Google Scholar 

  63. Liu C, Yao Q (2018) Mechanism of thermal degradation of aryl bisphosphates and the formation of polyphosphates. J Anal Appl Pyrolysis 133:216–224. https://doi.org/10.1016/j.jaap.2018.03.022

    Article  CAS  Google Scholar 

  64. Jang BN, Wilkie CA (2005) The effects of triphenylphosphate and recorcinolbis(diphenylphosphate) on the thermal degradation of polycarbonate in air. Thermochim Acta 433(1):1–12. https://doi.org/10.1016/j.tca.2005.01.071

    Article  CAS  Google Scholar 

  65. Feng J, Hao J, Du J, Yang R (2010) Flame retardancy and thermal properties of solid bisphenol a bis(diphenyl phosphate) combined with montmorillonite in polycarbonate. Polym Degrad Stab 95(10):2041–2048. https://doi.org/10.1016/j.polymdegradstab.2010.07.005

    Article  CAS  Google Scholar 

  66. Alexandrino EM, da Conceição TF, Felisberti MI (2014) Improvement of processing and mechanical properties of polyetherimide by antiplasticization with resorcinol bis(diphenyl phosphate). J Appl Polym Sci 131(16):40619. https://doi.org/10.1002/app.40619

    Article  CAS  Google Scholar 

  67. Mu X, Wang D, Pan Y, Cai W, Song L, Hu Y (2019) A facile approach to prepare phosphorus and nitrogen containing macromolecular covalent organic nanosheets for enhancing flame retardancy and mechanical property of epoxy resin. Compos B 164:390–399. https://doi.org/10.1016/j.compositesb.2018.12.036

    Article  CAS  Google Scholar 

  68. Guo Y, He S, Zuo X, Xue Y, Chen Z, Chang C-C, Weil E, Rafailovich M (2017) Incorporation of cellulose with adsorbed phosphates into poly (lactic acid) for enhanced mechanical and flame retardant properties. Polym Degrad Stab 144:24–32. https://doi.org/10.1016/j.polymdegradstab.2017.08.004

    Article  CAS  Google Scholar 

  69. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104(10):4419–4462. https://doi.org/10.1021/cr020738u

    Article  CAS  Google Scholar 

  70. Nesterova T, Dam-Johansen K, Kiil S (2010) Synthesis of durable microcapsules for self-healing anticorrosive coatings: a comparison of selected methods. Prog Org Coat 70(4):342–352. https://doi.org/10.1016/j.porgcoat.2010.09.032

    Article  CAS  Google Scholar 

  71. Xu G, Ding L, Wu T, Xiang M, Yang F (2018) Effect of high molecular weight on pore formation and various properties of microporous membrane used for lithium-ion battery separator. J Polym Res 25(8):166. https://doi.org/10.1007/s10965-018-1567-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (21574060, 21774053, and 51903123); Major Special Projects of Jiangxi Provincial Department of Science and Technology (20114ABF05100); Technology Plan Landing Project of Jiangxi Provincial Department of Education (GCJ2011-24).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaigai Duan or Haoqing Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Yu, J., Duan, G. et al. Electrospun polyimide nonwovens with enhanced mechanical and thermal properties by addition of trace plasticizer. J Mater Sci 55, 5667–5679 (2020). https://doi.org/10.1007/s10853-020-04402-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04402-2

Navigation