Skip to main content

Advertisement

Log in

Freeze-drying preparation of MnOx/graphene nanocomposite as anode material for highly reversible lithium storage

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Manganese oxides (MnOx) as potential anode materials need support by porous carbonaceous materials to avoid its large volume change, pulverization and poor conductivity during lithiation and delithiation. However, the homogeneous distribution of MnOx particles onto graphene sheets (rGO) is still questionable, because both components have different densities and activity in solution. Freeze-drying technique has gained remarkable attention for the fabrication of porous nanocomposites. In this work, a homogeneous nanocomposite of MnOx/rGO is successfully synthesized by freeze-drying technique compared with MnOx/rGO sample synthesized by traditional drying method, and MnrGO-FD sample exhibits an improved rate performance and cyclic performance. It delivers 1446.4 mAh g−1 with Coulombic efficiency (CE) of 70.4% at the initial cycle and remains 1246.6 mAh g−1 with CE of 98.6% after 150 cycles at 0.1 A g−1. Moreover, it delivers capacity of 729.1 mAh g−1 with CE of 99.3% at 1 A g−1 for 300 cycles. Benefiting from freeze-drying, MnOx nanoparticles are distributed on porous graphene framework and graphene buffers the volume expansion of MnOx and provides conductive channels between electrolyte and active materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhang Y, Zhao C, Zeng Z, Ang JM, Che B, Wang Z, Lu X (2018) Graphene nanoscroll/nanosheet aerogels with confined SnS2 nanosheets: simultaneous wrapping and bridging for high-performance lithium-ion battery anodes. Electrochim Acta 278:156–164

    Article  CAS  Google Scholar 

  2. Feng T, Wang J, Yang J, Wu M (2019) Investigation of ordered mesoporous carbon@MnO core-shell nanospheres as anode material for lithium-ion batteries. J Mater Sci 54:6461–6470. https://doi.org/10.1007/s10853-018-03307-5

    Article  CAS  Google Scholar 

  3. Wang JR, Fan HB, Shen YM, Li CP, Wang G (2019) Large-scale template-free synthesis of nitrogen-doped 3D carbon frameworks as low-cost ultra-long-life anodes for lithium-ion batteries. Chem Eng J 357:376–383

    Article  CAS  Google Scholar 

  4. Park SK, Seong CY, Yoo S (2016) Porous Mn3O4 nanorod-reduced graphene oxide hybrid paper as a flexible and binder-free anode material for lithium ion battery. Energy 99:266–273

    Article  CAS  Google Scholar 

  5. Feng QX, Li HX, Tan Z, Huang ZY, Jiang LL, Zhou HH, Pan HY, Zhou Q, Ma S, Kuang YF (2018) Design and preparation of three-dimensional MnO/N-doped carbon nanocomposites based on waste biomass for high storage and ultra-fast transfer of lithium ions. J Mater Chem A 6:19479–19487

    Article  CAS  Google Scholar 

  6. Lee JW, Seo SD, Kim DW (2019) Hierarchical Zn1.67Mn1.33O4/graphene nanoaggregates as new anode material for lithium-ion batteries. Int J Energy Res 43:1735–1746

    Article  CAS  Google Scholar 

  7. Tie D, Huang SF, Wang J, Ma JM, Zhang JJ, Zhao YF (2019) Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater 21:22–40

    Article  Google Scholar 

  8. Huang SF, Tie D, Wang M, Wang B, Jia P, Wang QJ, Chang GL, Zhang JJ, Zhao YF (2019) Largely increased lithium storage ability of mangnese oxide through a continuous electronic structure modulation and elevated capacitive contribution. ACS Sustain Chem Eng 7:740–747

    Article  CAS  Google Scholar 

  9. Samuel E, Jo HS, Joshi B, An S, Park HG, Il Kim Y, Yoon WY, Yoon SS (2017) Decoration of MnO nanocrystals on flexible freestanding carbon nanofibers for lithium ion battery anodes. Electrochim Acta 231:582–589

    Article  CAS  Google Scholar 

  10. Kwon OS, Kim T, Lee JS, Park SJ, Park HW, Kang M, Lee JE, Jang J, Yoon H (2013) Fabrication of graphene sheets intercalated with manganese oxide/carbon nanofibers: toward high-capacity energy storage. Small 9:248–254

    Article  CAS  Google Scholar 

  11. Gao D, Luo S, Zhang Y, Liu J, Wu H, Wang S, He P (2018) Mn3O4/carbon nanotubes nanocomposites as improved anode materials for lithium-ion batteries. J Solid State Electrochem 22:3409–3417

    Article  CAS  Google Scholar 

  12. Li WL, Zhu ZB, Shen WJ, Tang JJ, Yang G, Xu ZX (2016) A novel PVdF-based composite gel polymer electrolyte doped with ionomer modified graphene oxide. RSC Adv 6:97338–97345

    Article  CAS  Google Scholar 

  13. Li J, Zhang X, Guo JQ, Peng RF, Xie RS, Huang YJ, Qi YC (2016) Facile surfactant- and template-free synthesis and electrochemical properties of SnO2/graphene composites. J Alloy Compd 674:44–50

    Article  CAS  Google Scholar 

  14. Pei XY, Mo DC, Lyu SS, Zhang JH, Fu YX (2019) Facile preparation of N-doped MnO/rGO composite as an anode material for high-performance lithium-ion batteries. Appl Surf Sci 465:470–477

    Article  CAS  Google Scholar 

  15. Wu LL, Zhao DL, Cheng XW, Ding ZW, Hu T, Meng S (2017) Nanorod Mn3O4 anchored on graphene nanosheet as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. J Alloy Compd 728:383–390

    Article  CAS  Google Scholar 

  16. Chen SJ, Cai DP, Yang XH, Chen QD, Zhan HB, Qu BH (2017) Metal-organic frameworks derived nanocomposites of mixed-valent MnOx nanoparticles in situ grown on ultrathin carbon sheets for high-performance supercapacitors and lithium-ion batteries. Electrochim Acta 256:63–72

    Article  CAS  Google Scholar 

  17. Huang SF, Wang M, Jia P, Wang B, Zhang JJ, Zhao YF (2019) N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Mater 20:225–233

    Article  Google Scholar 

  18. Ma C, Jiang JL, Xu TT, Ji HM, Yang Y, Yang G (2018) Freeze-drying assisted synthesis of porous SnO2/rGO xerogel as anode materials for highly reversible lithium/sodium storage. ChemElectroChem 5:2387–2394

    Article  CAS  Google Scholar 

  19. An GM, Yu P, Xiao MJ, Liu ZM, Miao ZJ, Ding KL, Mao LQ (2008) Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors. Nanotechnology 19:275709

    Article  Google Scholar 

  20. Yang G, Li Y, Ji H, Wang H, Gao P, Wang L, Liu H, Pinto J, Jiang X (2012) Influence of Mn content on the morphology and improved electrochemical properties of Mn3O4|MnO@carbon nanofiber as anode material for lithium batteries. J Power Sources 216:353–362

    Article  CAS  Google Scholar 

  21. Jiang H, Hu YJ, Guo SJ, Yan CY, Lee PS, Li CZ (2014) Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 8:6038–6046

    Article  CAS  Google Scholar 

  22. Jacob KT, Kumar A, Rajitha G, Waseda Y (2011) Thermodynamic data for Mn3O4, Mn2O3 and MnO2. High Temp Mater Proc 30:459–472

    Article  CAS  Google Scholar 

  23. Bai ZC, Zhang XY, Zhang YW, Guo CL, Tang B (2014) Facile synthesis of mesoporous Mn3O4 nanorods as a promising anode material for high performance lithium-ion batteries. J Mater Chem A 2:16755–16760

    Article  CAS  Google Scholar 

  24. Salazar-Alvarez G, Sort J, Surinãch S, Baró MD, Nogués J (2007) Synthesis and size-dependent exchange bias in inverted core-shell MnO/Mn3O4 nanoparticles. J Am Chem Soc 129:9102–9108

    Article  CAS  Google Scholar 

  25. Yue J, Gu X, Chen L, Wang NN, Jiang XL, Xu HY, Yang J, Qian YT (2014) General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries. J Mater Chem A 2:17421–17426

    Article  CAS  Google Scholar 

  26. Wang L, Li YH, Han ZD, Chen L, Qian B, Jiang XF, Pinto J, Yang G (2013) Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene. J Mater Chem A 1:8385–8397

    CAS  Google Scholar 

  27. Zhang M, Huang B, Jiang H, Chen Y (2017) Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selective catalytic reduction of NO with NH3. Front Chem Sci Eng 11:594–602

    Article  CAS  Google Scholar 

  28. Debnath B, Salunke HG, Shivaprasad SM, Bhattacharyya S (2017) Surfactant-mediated resistance to surface oxidation in MnO nanostructures. ACS Omega 2:3028–3035

    Article  CAS  Google Scholar 

  29. Gao J, Lowe MA, Abruna HD (2011) Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem Mater 23:3223–3227

    Article  CAS  Google Scholar 

  30. Wang HL, Cui LF, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai HJ (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    Article  CAS  Google Scholar 

  31. Hu X, Lou X, Li C, Yang Q, Chen Q, Hu B (2018) Green and rational design of 3D layer-by-layer MnOx hierarchically mesoporous microcuboids from MOF templates for high-rate and long-life Li-ion batteries. ACS Appl Mater Interfaces 10:14684–14697

    Article  CAS  Google Scholar 

  32. Wang J, Deng Q, Li M, Wu C, Jiang K, Hu Z, Chu J (2018) Facile fabrication of 3D porous MnO@GS/CNT architecture as advanced anode materials for high-performance lithium-ion battery. Nanotechnology 29:315403

    Article  Google Scholar 

  33. Lu S, Gao Y, Li Z, Dong B, Gao T, Ding S, Bai Y, Gao G (2018) Hierarchical hybrid sandwiched structure of ultrathin graphene nanosheets enwrapped MnO nanooctahedra with excellent lithium storage capability. J Alloy Compd 749:424–432

    Article  CAS  Google Scholar 

  34. Yao W, Chen J, Zhan L, Wang Y, Yang S (2017) Two-dimensional porous sandwich-like C/Si-Graphene-Si/C nanosheets for superior lithium storage. ACS Appl Mater Interfaces 9:39371–39379

    Article  CAS  Google Scholar 

  35. Wang JG, Jin D, Zhou R, Li X, Liu XR, Shen C, Xie K, Li B, Kang F, Wei B (2016) Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS Nano 10:6227–6234

    Article  CAS  Google Scholar 

  36. Li Y, Wang P, Bao Y, Huang K (2017) A flexible nanostructured paper of MnO NPs@MWCNTs/r-GO multilayer sandwich composite for high-performance lithium-ion batteries. Ceram Int 43:7588–7593

    Article  CAS  Google Scholar 

  37. Yu Y, Huang SF, Wang B, Tie D, Wang QJ, Hou YL, Zhao YF (2019) Achieving high-energy full-cell lithium-storage performance by coupling high-capacity V2O3 with low-potential Ni2P anode. ACS Appl Mater Interfaces 11:19–25

    Article  CAS  Google Scholar 

  38. Jiang Y, Jiang ZJ, Chen B, Jiang Z, Cheng S, Rong H, Huang J, Liu M (2016) Morphology and crystal phase evolution induced performance enhancement of MnO2 grown on reduced graphene oxide for lithium ion batteries. J Mater Chem A 4:2643–2650

    Article  CAS  Google Scholar 

  39. Shi SS, Li ZP, Sun Y, Wang B, Liu QN, Hou YL, Huang SF, Huang JY, Zhao YF (2018) A covalent heterostructure of monodisperse Ni2P immobilized on N, P-codoped carbon nanosheets for high performance sodium/lithium storage. Nano Energy 48:510–517

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51802030) and Natural Science Foundation of Jiangsu Province of China (No. BK20170435).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhong Li or Gang Yang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Sun, R., Chen, Y. et al. Freeze-drying preparation of MnOx/graphene nanocomposite as anode material for highly reversible lithium storage. J Mater Sci 55, 5545–5553 (2020). https://doi.org/10.1007/s10853-020-04395-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04395-y

Navigation