Skip to main content

Advertisement

Log in

Hierarchically porous carbon microfibers for solid-state supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The architectures of sustainable carbon fibers are highly acquired from the perspective of supercapacitor (SC) applications, which has stimulated the exploration of advanced functional carbons for further enhancing the SC performance. Here, through integrating the strategies of ternary hybridization and chemical activation into one structure, hierarchically porous N-doped carbon microfiber sample (CPZ-AC), using a hybrid precursor of polyaniline (PANI) and ZIF-8 in situ grown on cotton thread, is rationally produced. It displays ideal capacitive properties especially with superior rate capability of 80% retention at a 100-fold rate. Moreover, the solid-state CPZ-AC//PVA/KOH (gel)//CPZ-AC SC achieves the highest power and energy densities of up to 4705.9 W kg−1 at 30 A g−1 and 5.2 Wh kg−1 at 0.5 A g−1, and decent cycling stability with 0.0015% capacitance decay per cycle within 10000 cycles at 4 A g−1. In addition, the device shows the applicability in portable electronics. This study may be extended to efficiently design ideal one-dimensional carbon materials promoting the blossom of carbon-based SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950

    CAS  Google Scholar 

  2. Ko Y, Kwon M, Bae WK, Lee B, Lee SW, Cho J (2017) Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat Commun 8:536–539

    Google Scholar 

  3. Kyeremateng NA, Brousse T, Pech D (2017) Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat Nanotechnol 12:7–10

    CAS  Google Scholar 

  4. Guo W, Yu C, Li S, Song X, Huang H, Han X, Wang Z, Liu Z, Yu J, Tan X, Qiu J (2019) A universal converse voltage process for triggering transition metal mybrids in situ phase pestruction toward ultrahigh-rate supercapacitors. Adv Mater 31:1901241

    Google Scholar 

  5. Wang M, Han K, Qi J, Li J, Teng Z, Li M (2019) Nanoscale/microscale porous graphene-like sheets derived from different tissues and components of cane stalk for high-performance supercapacitors. J Mater Sci 54:14085–14101. https://doi.org/10.1007/s10853-019-03910-0

    Article  CAS  Google Scholar 

  6. Zhong Y, Xia X, Deng S, Zhan J, Fang R, Xia Y, Wang X, Zhang Q, Tu J (2018) Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium–sulfur batteries. Adv Energy Mater 8:1701110

    Google Scholar 

  7. Wang Y, Liu T, Lin X, Chen H, Chen S, Jiang Z, Chen Y, Liu J, Huang J, Liu M (2018) Self-templated synthesis of hierarchically porous N-doped carbon derived from biomass for supercapacitors. ACS Sustain Chem Eng 6:13932–13939

    CAS  Google Scholar 

  8. Zhang S, Wu C, Wu W, Zhou C, Xi Z, Deng Y, Wang X, Quan P, Li X, Luo Y (2019) High performance flexible supercapacitors based on porous wood carbon slices derived from Chinese fir wood scraps. J Power Sources 424:1–7

    CAS  Google Scholar 

  9. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2018) A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J Mater Chem A 6:1244–1254

    CAS  Google Scholar 

  10. Chang Y, Zhang G, Han B, Li H, Hu C, Pang Y, Chang Z, Sun X (2017) Polymer dehalogenation-enabled fast fabrication of N, S-codoped carbon materials for superior supercapacitor and deionization applications. ACS Appl Mater Interfaces 9:29753–29759

    CAS  Google Scholar 

  11. Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49:2796–2806

    CAS  Google Scholar 

  12. Yang W, Li X, Li Y, Zhu R, Pang H (2019) Applications of metal-organic-framework-derived carbon materials. Adv Mater 31:1804740

    Google Scholar 

  13. Wang CH, Kaneti YV, Bando Y, Lin JJ, Liu C, Li JS, Yamauchi Y (2018) Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater Horiz 5:394–407

    CAS  Google Scholar 

  14. Zhang W, Jiang X, Wang X, Kaneti YV, Chen Y, Liu J, Jiang J, Yamauchi Y, Hu M (2017) Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew Chem Int Edit 56:8435–8440

    CAS  Google Scholar 

  15. Meng J, Niu C, Xu L, Li J, Liu X, Wang X, Wu Y, Xu X, Chen W, Li Q, Zhu Z, Zhao D, Mai L (2017) General oriented formation of carbon nanotubes from metal–organic frameworks. J Am Chem Soc 139:8212–8221

    CAS  Google Scholar 

  16. Liu W, Wang K, Li C, Zhang X, Sun X, Han J, Wu X, Li F, Ma Y (2018) Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte. J Mater Chem A 6:24979–24987

    CAS  Google Scholar 

  17. Wang K, Xu M, Gu Z, Ahrenkiel P, Lee J, Gibbons W, Croat J, Fan Q (2016) Pyrrole modified biomass derived hierarchical porous carbon as high performance symmetrical supercapacitor electrodes. Int J Hydrog Energy 41:13109–13115

    CAS  Google Scholar 

  18. Mustafov SD, Mohanty AK, Misra M, Seydibeyoğlu MÖ (2019) Fabrication of conductive lignin/PAN carbon nanofiber with enhanced graphene for the modified electrode. Carbon 147:262–275

    Google Scholar 

  19. Du W, Wang X, Sun X, Zhan J, Zhang H, Zhao X (2018) Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes. J Electroanal Chem 827:213–220

    CAS  Google Scholar 

  20. Deng X, Li J, Zhu S, Ma L, Zhao N (2019) Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Mater 23:491–498

    Google Scholar 

  21. Du J, Liu L, Hu Z, Yu Y, Zhang Y, Hou S, Chen A (2018) Raw-cotton-derived N-doped carbon fiber aerogel as an efficient electrode for electrochemical capacitors. ACS Sustain Chem Eng 6:4008–4015

    CAS  Google Scholar 

  22. Chen LF, Lu Y, Yu L, Lou XW (2017) Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci 10:1777–1783

    CAS  Google Scholar 

  23. Li Y, Zhu G, Huang H, Xu M, Lu T, Pan L (2019) A N, S dual doping strategy via electrospinning to prepare hierarchically porous carbon polyhedral embedded carbon nanofibers for flexible supercapacitors. J Mater Chem A 7:9040–9050

    CAS  Google Scholar 

  24. Liu M, Niu J, Zhang Z, Dou M, Wang F (2018) Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51:366–372

    CAS  Google Scholar 

  25. Ni D, Sun W, Wang Z, Bai Y, Lei H, Lai X, Sun K (2019) Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life. Adv Energy Mater 19:1900036

    Google Scholar 

  26. Dai P, Xue Y, Zhang S, Cao L, Tang D, Gu X, Li L, Wang X, Jiang X, Liu D, Kong L, Bando Y, Golberg D, Zhao X (2018) Paper-derived flexible 3D interconnected carbon microfiber networks with controllable pore sizes for supercapacitors. ACS Appl Mater Interfaces 10:37046–37056

    CAS  Google Scholar 

  27. Chen S, Zhao L, Ma J, Wang Y, Dai L, Zhang J (2019) Edge-doping modulation of N, P-codoped porous carbon spheres for high performance rechargeable Zn-air batteries. Nano Energy 60:536–544

    CAS  Google Scholar 

  28. Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324

    CAS  Google Scholar 

  29. Hao P, Zhao Z, Tian J, Li H, Sang Y, Yu G, Cai H, Liu H, Wong C, Umar A (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129

    CAS  Google Scholar 

  30. Li L, Liu E, Li J, Yang Y, Shen H, Huang Z, Xiang X, Li W (2010) A doped activated carbon prepared from polyaniline for high performance supercapacitors. J Power Sources 195:1516–1521

    CAS  Google Scholar 

  31. Li YQ, Huang P, Zhu WB, Fu SY, Hu N, Liao K (2017) Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Sci Rep 7:45013

    CAS  Google Scholar 

  32. Li Z, Gao S, Mi H, Lei C, Ji C, Xie Z, Yu C, Qiu J (2019) High-energy quasi-solid-state supercapacitors enabled by carbon nanofoam from biowaste and high-voltage inorganic gel electrolyte. Carbon 149:273–280

    CAS  Google Scholar 

  33. Lu Y, Chen N, Bai Z, Mi H, Ji C, Sun L (2018) Acid-assisted strategy combined with KOH activation to efficiently optimize carbon architectures from green copolymer adhesive for solid-state supercapacitors. ACS Sustain Chem Eng 6:14838–14846

    Google Scholar 

  34. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    CAS  Google Scholar 

  35. Qi F, Xia Z, Sun R, Sun X, Xu X, Wei W, Wang S, Sun G (2018) Graphitization induced by KOH etching for the fabrication of hierarchical porous graphitic carbon sheets for high performance supercapacitors. J Mater Chem A 6:14170–14177

    CAS  Google Scholar 

  36. Liu Z, Jiang L, Sheng L, Zhou Q, Wei T, Zhang B, Fan Z (2018) Oxygen clusters distributed in graphene with “paddy land” structure: ultrahigh capacitance and rate performance for supercapacitors. Adv Funct Mater 28:1705258

    Google Scholar 

  37. Qiu Z, Wang Y, Bi X, Zhou T, Zhou J, Zhao J, Miao Z, Yi W, Fu P, Zhuo S (2018) Biochar-based carbons with hierarchical micro–meso–macro porosity for high rate and long cycle life supercapacitors. J Power Sources 376:82–90

    CAS  Google Scholar 

  38. Hou J, Jiang K, Tahir M, Wu X, Idrees F, Shen M, Cao C (2017) Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors. J Power Sources 371:148–155

    CAS  Google Scholar 

  39. Zhang R, Jing X, Chu Y, Wang L, Kang W, Wei D, Li H, Xiong S (2018) Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors. J Mater Chem A 6:17730–17739

    CAS  Google Scholar 

  40. Cao XM, Han ZB (2019) Hollow core–shell ZnO@ ZIF-8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance. Chem Commun 55:1746–1749

    CAS  Google Scholar 

  41. Liang JY, Wang CC, Lu SY (2015) Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors. J Mater Chem A 3:24453–24462

    CAS  Google Scholar 

  42. Feng L, Wang K, Zhang X, Sun X, Li C, Ge X, Ma Y (2018) Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater 28:1704463

    Google Scholar 

  43. Wan L, Wei W, Xie M, Zhang Y, Li X, Xiao R, Chen J, Du C (2019) Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode. Electrochim Acta 311:72–82

    CAS  Google Scholar 

  44. Li Z, Mi H, Liu L, Bai Z, Zhang J, Zhang Q, Qiu J (2018) Nano-sized ZIF-8 anchored polyelectrolyte-decorated silica for nitrogen-rich hollow carbon shell frameworks toward alkaline and neutral supercapacitors. Carbon 136:176–186

    CAS  Google Scholar 

  45. Zhang W, Lin N, Liu D, Xu J, Sha J, Yin J, Tan X, Yang H, Lu H, Lin H (2017) Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy 128:618–625

    CAS  Google Scholar 

  46. Dong L, Xu C, Li Y, Wu C, Jiang B, Yang Q, Zhou E, Kang F, Yang Q (2016) Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv Mater 28:1675–1681

    CAS  Google Scholar 

  47. Dong L, Xu C, Yang Q, Fang J, Li Y, Kang F (2015) High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. J Mater Chem A 3:4729–4737

    CAS  Google Scholar 

  48. Liu Z, Zeng Y, Tang Q, Hu A, Xiao K, Zhang S, Deng W, Fan B, Zhu Y, Chen X (2017) Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for high rate performance supercapacitors. J Power Sources 361:70–79

    CAS  Google Scholar 

  49. You B, Jiang J, Fan S (2014) Three-dimensional hierarchically porous all-carbon foams for supercapacitor. ACS Appl Mater Interfaces 6:15302–15308

    CAS  Google Scholar 

  50. Han J, Xu G, Ding B, Pan J, Dou H, MacFarlane DR (2014) Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J Mater Chem A 2:5352–5357

    CAS  Google Scholar 

  51. Yi J, Qing Y, Wu C, Zeng Y, Wu Y, Lu X, Tong Y (2017) Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J Power Sources 351:130–137

    CAS  Google Scholar 

  52. Lai CC, Lo CT (2015) Preparation of nanostructural carbon nanofibers and their electrochemical performance for supercapacitors. Electrochim Acta 183:85–93

    CAS  Google Scholar 

  53. Fan X, Yu C, Ling Z, Yang J, Qiu J (2013) Hydrothermal synthesis of phosphate-functionalized carbon nanotube-containing carbon composites for supercapacitors with highly stable performance. ACS Appl Mater Interfaces 5:2104–2110

    CAS  Google Scholar 

  54. Wang Q, Yan J, Wang Y, Ning G, Fan Z, Wei T, Cheng J, Zhang M, Jing X (2013) Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors. Carbon 52:209–218

    CAS  Google Scholar 

  55. Xu G, Han J, Ding B, Nie P, Pan J, Dou H, Li H, Zhang X (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17:1668–1674

    CAS  Google Scholar 

  56. Wang H, Yi H, Zhu C, Wang X, Fan H (2015) Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy 13:658–669

    CAS  Google Scholar 

  57. Tan Y, Xu C, Chen G, Liu Z, Ma M, Xie Q, Zheng N, Yao S (2013) Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl Mater Interfaces 5:2241–2248

    CAS  Google Scholar 

  58. Jiang W, Li L, Pan J, Senthil RA, Jin X, Cai J, Wang J, Liu X (2019) Hollow-tubular porous carbon derived from cotton with high productivity for enhanced performance supercapacitor. J Power Sources 438:226936

    CAS  Google Scholar 

  59. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47:373–376

    CAS  Google Scholar 

  60. Hu F, Zhang T, Wang J, Liu C, Li S, Hu S, Jian X (2018) Simple fabrication of high-efficiency N, O, F, P-containing electrodes through host–guest doping for high-performance supercapacitors. ACS Sustain Chem Eng 6:15764–15772

    CAS  Google Scholar 

  61. Chang HW, Lu YR, Chen JL, Chen CL, Chen JM, Tsai YC, Chou WC, Dong CL (2016) Electrochemically activated reduced graphene oxide used as solid state symmetric supercapacitor: an X-ray absorption spectroscopic investigation. J Phys Chem C 120:22134–22141

    CAS  Google Scholar 

  62. Miao F, Shao C, Li X, Lu N, Wang K, Zhang X, Liu Y (2016) Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors. Energy 95:233–241

    CAS  Google Scholar 

  63. Na R, Wang X, Lu N, Huo G, Lin H, Wang G (2018) Novel egg white gel polymer electrolyte and a green solid-state supercapacitor derived from the egg and rice waste. Electrochim Acta 274:316–325

    CAS  Google Scholar 

  64. Li WH, Ding K, Tian HR, Yao MS, Nath B, Deng WH, Wang YB, Xu G (2017) Conductive metal–organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv Funct Mater 27:1702067

    Google Scholar 

  65. Zhao G, Chen C, Yu D, Sun L, Yang C, Zhang H, Sun Y, Besenbacher F, Yu M (2018) One-step production of O–N–S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47:547–555

    CAS  Google Scholar 

  66. Wang H, Yu S, Xu B (2016) Hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors. Chem Commun 52:11512–11515

    CAS  Google Scholar 

  67. Li M, Liu C, Cao H, Zhao H, Zhang Y, Fan Z (2014) KOH self-templating synthesis of three dimensional hierarchical porous carbon materials for high performance supercapacitors. J Mater Chem A 2:14844–14851

    CAS  Google Scholar 

  68. Wang SX, Chen S, Wei Q, Zhang X, Wong SY, Sun S, Li X (2013) Bioinspired synthesis of hierarchical porous graphitic carbon spheres with outstanding high-rate performance in lithium-ion batteries. Chem Mater 27:336–342

    Google Scholar 

  69. Song Z, Zhu D, Li L, Chen T, Duan H, Wang Z, Lv Y, Xiong W, Liu M, Gan L (2019) Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. J Mater Chem A 7:1177–1186

    CAS  Google Scholar 

  70. Peng L, Liang Y, Dong H, Hu H, Zhao X, Cai Y, Xiao Y, Liu Y, Zheng M (2018) Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors. J Power Sources 377:151–160

    CAS  Google Scholar 

  71. Liu Y, Qiu X, Liu X, Liu Y, Fan LZ (2018) 3D porous binary-heteroatom doped carbon nanosheet/electrochemically exfoliated graphene hybrids for high performance flexible solid-state supercapacitors. J Mater Chem A 6:8750–8756

    CAS  Google Scholar 

Download references

Acknowledgements

The work was sponsored by the National Natural Science Foundation of China (21965033, 21563029, 21805237), Opening Foundation of the State Key Laboratory of Fine Chemicals (KF1805), and the Natural Sciences Foundation of Xinjiang Uygur Autonomous Region (2019D01C075, 2018D01C053). Also, the authors would like to thank Prof. Tao Wang and Prof. Jian min Luo from Xinjiang University Physical and Chemical Testing Center for structural characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyu Mi or Luyi Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Mi, H., Ji, C. et al. Hierarchically porous carbon microfibers for solid-state supercapacitors. J Mater Sci 55, 5510–5521 (2020). https://doi.org/10.1007/s10853-020-04376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04376-1

Navigation