Skip to main content

Advertisement

Log in

Scaffolds modified with graphene as future implants for nasal cartilage

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a 3D printing process was used to fabricate antibacterial polycaprolactone/graphene scaffolds using short filament sticks. The first part of the work focused on the manufacture of a strong and flexible filament, in the form of sticks for use in the existing FDM system without any hardware or software modification. New filament materials, which can be connected together, containing graphene nanoplatelets have been prepared at three levels of concentration: 0.5, 5 and 10 wt%. The PCL and graphene were processed into filaments using injection molding, and their morphology, FTIR, WAXS, ultrasonic wave propagation, and mechanical properties were measured. WAXS and ultrasonic tests confirmed the even distribution of graphene powder in the sample modified with 0.5 wt% of graphene. The presence of graphene in the samples improved their mechanical properties; however, 10 wt% of addition did not produce further tensile strength enhancement. The filaments were successfully tested in a commercially available 3D printer to evaluate their capacity to produce printed scaffolds for nasal cartilage replacement. Initial cell culture study has shown that printed scaffolds support the proliferation of chondrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Rajzer I, Menaszek E, Bacakova L, Orzelski M, Błażewicz M (2013) Hyluronic acid-coated carbon nonwoven fabrics as potential material for repair of osteochondral defects. Fibres Text East Eur 99(3):102–107

    Google Scholar 

  2. Patel K, Brandstetter K (2016) Solid implants in facial plastic surgery: potential complications and how to prevent them. Facial Plast Surg 32:520–531. https://doi.org/10.1055/s-0036-1586497

    Article  CAS  Google Scholar 

  3. Lavernia L, Brown WE, Wong BJF, Hua JC, Athanasiou KA (2019) Toward tissue-engineering of nasal cartilages. Acta Biomater. https://doi.org/10.1016/j.actbio.2019.02.025

    Article  Google Scholar 

  4. Ottoline AC, Tomita S, Marques MP, Felix F, Ferraiolo PN, Laurindo RS (2013) Antibiotic prophylaxis in otolaryngologic surgery. Int Arch Otorhinolaryngol 17(1):85–91. https://doi.org/10.7162/S1809-97772013000100015

    Article  Google Scholar 

  5. Rajzer I, Kurowska A, Jabłoński A, Jatteau S, Śliwka M, Ziąbka M, Menaszek E (2018) Layered gelatin/PLLA scaffolds fabricated by electrospinning and 3D printing- for nasal cartilages and subchondral bone reconstruction. Mater Des 155:297–306. https://doi.org/10.1016/j.matdes.2018.06.012

    Article  CAS  Google Scholar 

  6. Jia A, Ee J, Teoh M, Suntornnond R, Chua CK (2015) Design and 3D printing of scaffolds and tissues. Engineering 1(2):261–268. https://doi.org/10.15302/J-ENG-2015061

    Article  Google Scholar 

  7. Bogun M, Mikolajczyk T, Kurzak A, Blazewicz M, Rajzer I (2006) Influence of the as-spun draw ratio on the structure and properties of PAN fibres including montmorillonite. Fibres Text East Eur 14(2):13–16

    CAS  Google Scholar 

  8. Gomes RN, Borges I, Pereira AT, Maia AF, Pestana M, Magalhães FD, Pinto AM, Gonçalves IC (2018) Antimicrobial graphene nanoplatelets coatings for silicone catheters. Carbon 139:635–647. https://doi.org/10.1016/j.carbon.2018.06.044

    Article  CAS  Google Scholar 

  9. Chaudhuri B, Mondal B, Kumar S, Sarkar SC (2016) Myoblast differentiation and protein expression in electrospun graphene oxide (GO)-poly(ε-caprolactone, PCL) composite meshes. Mater Lett 182:194–197. https://doi.org/10.1016/j.matlet.2016.06.107

    Article  CAS  Google Scholar 

  10. Ionita M, Vlasceanu GM, Watzlawek AA, Voicu SI, Burns JS, Iovu H (2017) Graphene and functionalized graphene: extraordinary prospects for nanobiocomposite materials. Compos B 121:34–57. https://doi.org/10.1016/j.compositesb.2017.03.031

    Article  CAS  Google Scholar 

  11. Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang YS, Tamayol A, Khademhosseini A (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105:255–274. https://doi.org/10.1016/j.addr.2016.03.007

    Article  CAS  Google Scholar 

  12. Pang L, Dai C, Bi L, Guo Z, Fan J (2017) biosafety and antibacterial ability of graphene and graphene oxide in vitro and in vivo. Nanoscale Res Lett 12(1):564. https://doi.org/10.1186/s11671-017-2317-0

    Article  CAS  Google Scholar 

  13. An J, Teoh JEM, Suntornnond R, Chua CK (2015) Design and 3D printing of scaffolds and tissues. Engineering 1(2):261–268. https://doi.org/10.15302/J-ENG-2015061

    Article  Google Scholar 

  14. Zhang B, Seong B, Nguyen V, Byun D (2016) 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J Micromech Microeng 26(2):025015. https://doi.org/10.1088/0960-1317/26/2/025015

    Article  CAS  Google Scholar 

  15. Fereshteh Z, Fathi M, Bagri A, Boccaccini AR (2016) Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze–drying method. Mater Sci Eng C 68:613–622. https://doi.org/10.1016/j.msec.2016.06.009

    Article  CAS  Google Scholar 

  16. Domalik-Pyzik P, Morawska-Chochół A, Chłopek J, Rajzer I, Wrona A, Menaszek E, Ambroziak M (2016) Polylactide/polycaprolactone asymmetric membranes for guided bone regeneration. E-Polymers 16(5):351–358. https://doi.org/10.1515/epoly-2016-0138

    Article  CAS  Google Scholar 

  17. Rajzer I (2014) Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. J Mater Sci 49(16):5799–5807. https://doi.org/10.1007/s10853-014-8311-

    Article  CAS  Google Scholar 

  18. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  19. Park JS, Lee SJ, Jo HH, Lee JH, Kim WD, Lee JY, Park SA (2017) Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. J Ind Eng Chem 46:175–181. https://doi.org/10.1016/j.jiec.2016.10.028

    Article  CAS  Google Scholar 

  20. Qu X, Xia P, He J, Li D (2016) Microscale electrohydrodynamic printing of biomimetic PCL/nHA composite scaffolds for bone tissue engineering. Mater Lett 185:554–555. https://doi.org/10.1016/j.matlet.2016.09.035

    Article  CAS  Google Scholar 

  21. Liu D, Nie W, Li D, Wang W, Zheng L, Zhang J, Zhang J, Peng C, Mo X, He C (2019) 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chem Eng J 362(15):269–279. https://doi.org/10.1016/j.cej.2019.01.015

    Article  CAS  Google Scholar 

  22. Chaudhuri B, Bhadra D, Moroni L, Pramanik K (2015) Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide–polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility. Biofabrication 7(1):015009. https://doi.org/10.1088/1758-5090/7/1/015009

    Article  CAS  Google Scholar 

  23. Vijayavenkataraman S, Thaharah S, Zhang S, Lu WF, Fuh JYH (2019) 3D-printed PCL/rGO conductive scaffolds for peripheral nerve injury repair. Artif Organs 43(5):515–523. https://doi.org/10.1111/aor.13360

    Article  CAS  Google Scholar 

  24. Qian Y, Zhao X, Han Q, Chen W, Li H, Yuan W (2018) An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration. Nat Commun 9(1):323. https://doi.org/10.1038/s41467-017-02598-7

    Article  CAS  Google Scholar 

  25. Kim JS, Khan NA, Song HM, Jang YJ (2010) Intraoperative measurements of harvestable septal cartilage in rhinoplasty. Ann Plast Surg 65(6):519–523. https://doi.org/10.1097/SAP.0b013e3181d59f95

    Article  CAS  Google Scholar 

  26. Giboz J, Copponnex T, Mele P (2009) Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding. J Micromech Microeng 19(2):1–12. https://doi.org/10.1088/0960-1317/19/2/025023

    Article  CAS  Google Scholar 

  27. Mavridis H, Hrymak AN, Vlachopoulos J (1986) Finite element simulation of fountain flow in injection molding. Polym Eng Sci 26(7):449–454. https://doi.org/10.1002/pen.760260702

    Article  CAS  Google Scholar 

  28. Gautam S, Dinda AK, Mishra NC (2013) Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng, C 33:1228–1235. https://doi.org/10.1016/j.msec.2012.12.015

    Article  CAS  Google Scholar 

  29. Bittiger H, Marchessault RH, Niegisch WD (1970) Crystal structure of poly-ε-caprolactone. Acta Crystallogr A B26:1923–1927. https://doi.org/10.1107/S0567740870005198

    Article  Google Scholar 

  30. Lee WC, Lim CH, Su C, Loh KP, Lim CT (2015) Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 11:963–969. https://doi.org/10.1002/smll.201401635

    Article  CAS  Google Scholar 

  31. Rajzer I, Piekarczyk W, Castaño O (2016) An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement. Mater Sci Eng C 67:20–25. https://doi.org/10.1016/j.msec.2016.04.083

    Article  CAS  Google Scholar 

  32. Atif R, Inam F (2016) Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J Nanotechnol 7:1174–1196. https://doi.org/10.3762/2Fbjnano.7.109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Centre, Poland in the framework of the project: “Layered scaffolds for nasal cartilages reconstruction fabricated by 3D printing and electrospinning” 2015/18/E/ST5/00189 (Sonata Bis 5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabella Rajzer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajzer, I., Kurowska, A., Jabłoński, A. et al. Scaffolds modified with graphene as future implants for nasal cartilage. J Mater Sci 55, 4030–4042 (2020). https://doi.org/10.1007/s10853-019-04298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04298-7

Navigation