Skip to main content
Log in

Effect of non-stoichiometry on the microstructure and microwave dielectric properties of Ca5Mg4+xV6O24 (− 0.05 ≤ x ≤ 0.15) ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ca5Mg4+xV6O24 (− 0.05 ≤ x ≤ 0.15) ceramics were prepared via a conventional solid-state reaction route. XRD patterns and Raman spectra confirmed that a single garnet phase was formed in all samples. The full-width-at-half maximum of Raman peaks revealed that an appropriate excess of magnesium ions improves the ordering degree of cations and quality factor (Q × f) value. The dielectric constant (εr) was closely correlated with the relative density and ion polarizability. The connections among the Q × f value, lattice energy, and packing fraction were discussed. As for the variation of the temperature coefficient of resonant frequency (τf), it was explained by the bond energy of V–O. Ca5Mg4+xV6O24 (x = 0.05) ceramic sintered at 825 °C achieved optimal microwave dielectric properties: ɛr = 9.93, Q × f = 56192 GHz, and τf = − 48.3 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Shoichiro N (2011) Ceramics for microwave dielectric resonator. Ferroelectrics 49:61–70

    Google Scholar 

  2. Chen YB (2009) New dielectric material system of Nd(Mg1/2Ti1/2)O3–CaTiO3 with ZnO addition at microwave frequencies. J Alloys Compd 478:781–784

    Article  CAS  Google Scholar 

  3. Tseng CF, Tseng PJ, Chang CM, Kao YC (2014) Novel temperature stable Li2MnO3 microwave dielectric ceramics with high Q for LTCC applications. J Am Ceram Soc 97:1918–1922

    Article  CAS  Google Scholar 

  4. Lei W, Lu WZ, Zhu JH, Wang XH (2007) Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites. Mater Lett 61:4066–4069

    Article  CAS  Google Scholar 

  5. Jiang XW, Fang L, Xiang HC (2015) A novel low-firing microwave dielectric ceramic NaMg4V3O12 and its chemical compatibility with silver electrode. Ceram Int 41:13878–13882

    Article  CAS  Google Scholar 

  6. Jo HJ, Kim ES (2016) Effects of structural characteristics on microwave dielectric properties of MgTi1-x(Mg1/3B2/3)xO3 (B = Nb, Ta). J Eur Ceram Soc 36:1399–1405

    Article  CAS  Google Scholar 

  7. Ota Y, Kakimoto K, Ohsato H, Okawa T (2004) Low-temperature sintering of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition. J Eur Ceram Soc 24:1755–1760

    Article  CAS  Google Scholar 

  8. Huang GH, Zhou DX, Xu JM, Chen XP, Zhang DL, Lu WZ, Li BY (2003) Low-temperature sintering and microwave dielectric properties of (Zr, Sn)TiO4 ceramics. J Eur Ceram Soc 99:416–420

    Google Scholar 

  9. Zhang GQ, Guo J, Yuan XF, Wang H (2018) Ultra-low temperature sintering and microwave dielectric properties of a novel temperature stable Na2Mo2O7 -Na0.5Bi0.5MoO4 ceramic. J Eur Ceram Soc 38:813–816

    Article  CAS  Google Scholar 

  10. Zhou D, Randall CA, Hong W (2010) Microwave dielectric ceramics in Li2O-Bi2O3-MoO3 system with ultra-low sintering temperatures. J Am Ceram Soc 93:1096–1100

    Article  CAS  Google Scholar 

  11. Kai C, Li CC, Xiang HC, Tang Y, Sun YH, Fang L (2019) Phase formation and microwave dielectric properties of BiMVO5 (M = Ca, Mg) ceramics potential for low temperature co-fired ceramics application. J Am Ceram Soc 102:362–371

    Article  CAS  Google Scholar 

  12. Li CC, Xiang HC, Xu MY, Jibran K, Chen JQ, Fang L (2018) Low-firing and temperature stable microwave dielectric ceramics: Ba2LnV3O11 (Ln = Nd, Sm). J Am Ceram Soc 101:773–781

    Article  CAS  Google Scholar 

  13. Kai C, Li CC, Xiang HC, Tang Y, Sun YH, Fang L (2019) Effects of Sr2+ substitution on the crystal structure, Raman spectra, bond valence and microwave dielectric properties of Ba3xSrx(VO4)2 solid solutions. J Eur Ceram Soc 39:3738–3743

    Article  Google Scholar 

  14. Yao GG, Liu P, Zhang HW (2013) Novel series of low-firing microwave dielectric ceramics: Ca5A4(VO4)6 (A2+ = Mg, Zn). J Am Ceram Soc 96(2013):1691–1693

    Article  CAS  Google Scholar 

  15. Yao GG, Pei CJ, Liu P, Zhou JP, Zhang HW (2016) Microwave dielectric properties of low temperature sintering Ca5Mn4(VO4)6 ceramics. J Mater Sci 27:7292–7296. https://doi.org/10.1007/s10854-016-4697-9

    Article  CAS  Google Scholar 

  16. Occelli ML, Maxwell RS, Eckert H (1994) Effects of phase impurities on vanadium-sepiolite interaction. Microporous Mesoporous Mater 3:305–308

    Article  CAS  Google Scholar 

  17. Huang YL, Yu YM, Tsuboi T, Seo HJ (2012) Novel yellow-emitting phosphors of Ca5M4(VO4)6 (M = Mg, Zn) with isolated VO4 tetrahedra. Opt Express 20:4360–4368

    Article  CAS  Google Scholar 

  18. Surendran KP, Sebastian MT, Mohanan P, Moreira RL, Dias A (2005) Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba(Mg0.33Ta0.67)O3. Chem Mater 17:142–151

    Article  CAS  Google Scholar 

  19. Li M, Feteira A, Mirsaneh M, Lee S, Lanagan MT, Randall CA, Sinclair DC (2010) Influence of nonstoichiometry on extrinsic electrical conduction and microwave dielectric loss of BaCo1/3Nb2/3O3 ceramics. J Am Ceram Soc 93:4087–4095

    Article  CAS  Google Scholar 

  20. Richard HL, Geoege DS (1979) Lattice parameters and ionic radii of the oxide and fluoride garnets. J Solid State Chem 30:79–82

    Article  Google Scholar 

  21. Lai Y, Tang XL, Zhang HW, Huang X, Li J, Su H (2017) Relationship between the structure and microwave dielectric properties of non-stoichiometric Li2+xSiO3 ceramics. Ceram Int 43:2664–2669

    Article  CAS  Google Scholar 

  22. Neelakantan UA, Kalathil SE, Ratheesh R (2015) Structure and microwave dielectric properties of ultralow-temperature cofirable BaV2O6 ceramics. Eur J Inorg Chem 2:305–310

    Article  Google Scholar 

  23. Glasser L, Jenkins HDB (2000) Lattice energies and unit cell volumes of complex ionic solids. J Am Chem Soc 122:632–638

    Article  CAS  Google Scholar 

  24. Jenkins HDB, Tudela D, Glasser L (2002) Lattice potential energy estimation for complex ionic salts from density measurements. Inorg Chem 41:2364–2367

    Article  CAS  Google Scholar 

  25. Kim WS, Yoon KH, Kim ES (2000) Microwave dielectric properties and far-infrared reflectivity characteristics of the CaTio3-Li(1/2)3xSm(1/2)+xTiO3 ceramics. J Am Chem Soc 83:2327–2329

    CAS  Google Scholar 

  26. Sanderson RT (1988) Principles of electronegativity. J Chem Educ 65:112–118

    Article  CAS  Google Scholar 

  27. Sanderson RT (1968) Multiple and single bond energies in inorganic molecules. J Inorg Nucl Chem 30:375–393

    Article  CAS  Google Scholar 

  28. Sanderson RT (1983) Electronegativity and bond energy. J Am Chem Soc 105:2259–2261

    Article  CAS  Google Scholar 

  29. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Liu, W. & Leng, H. Effect of non-stoichiometry on the microstructure and microwave dielectric properties of Ca5Mg4+xV6O24 (− 0.05 ≤ x ≤ 0.15) ceramics. J Mater Sci 55, 3795–3802 (2020). https://doi.org/10.1007/s10853-019-04287-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04287-w

Navigation