Skip to main content
Log in

Relationship between crystal structure and dielectric properties of non-stoichiometric Mg2 +xAl4 +ySi5 +zO18-based microwave ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of non-stoichiometry on the phase composition, crystal structure, and dielectric properties of Mg2 + xAl4 + ySi5 + zO18 ceramics were systematically studied. The stoichiometry deviation of Mg2 + xAl4 + ySi5 + zO18 ceramics leads to a change in the [MgO6] oxygen octahedron and symmetry of crystal structure, which has a significant impact on their dielectric properties. The theoretical polarizability improves linearly with the increase of stoichiometric ratio deviation, resulting in a slight increase of permittivity from 4.93 to 5.08. The center symmetry of the [(Si4Al2)O18] hexagonal ring in Mg2 + xAl4 + ySi5 + zO18 ceramics plays a crucial role in determining the Q×f value. The enhanced center symmetry of [(Si4Al2)O18] hexagonal ring from asymmetric structure to centrosymmetric structure improves the Q×f values of Mg2 + xAl4 + ySi5 + zO18 ceramics. The reduction of τf value is correlated to the decrease of Mg–O bond value and the increase of [MgO6] oxygen octahedral distortion. The Mg2.2Al4Si5O18 ceramic presents excellent dielectric properties at 1440 °C for 4h: εr = 4.97, Q×f = 100,268 GHz, and τf = −12.07ppm/ °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary materials.

References

  1. H. Ohsato, T. Tsunooka, T. Sugiyama, K.I. Kakimoto, H. Ogawa, Forsterite ceramics for millimeterwave dielectrics. J. Electroceram. 17, 445–450 (2006). https://doi.org/10.1007/s10832-006-0452-6

    Article  CAS  Google Scholar 

  2. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006). https://doi.org/10.1111/j.1551-2916.2006.01025.x

    Article  CAS  Google Scholar 

  3. L. Shi, D. Zhang, R. Peng, C. Liu, X. Shi, X. Wang, H. Zhang, Investigation of crystal characteristics, Raman spectra, and microwave dielectric properties of Mg1 – xZnxTa2O6 ceramics. J. Eur. Ceram. Soc. 41, 5526–5530 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.05.012

    Article  CAS  Google Scholar 

  4. Y. Zhan, L. Li, Low-permittivity and high-Q value Li2Mg3Ti1−x(Zn1/3Nb2/3)xO6 microwave dielectric ceramics for microstrip antenna applications in 5G millimeter wave. J. Alloys Compd. 857, 157608 (2021). https://doi.org/10.1016/j.jallcom.2020.157608

    Article  CAS  Google Scholar 

  5. H. Yang, S. Zhang, H. Yang, Q. Wen, Q. Yang, L. Gui, Q. Zhao, E. Li, The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. J. Adv. Ceram. 10, 885–932 (2021). https://doi.org/10.1007/s40145-021-0528-4

    Article  CAS  Google Scholar 

  6. W. Lou, M. Mao, K. Song, K. Xu, B. Liu, W. Li, B. Yang, Z. Qi, J. Zhao, S. Sun, H. Lin, Y. Hu, D. Zhou, D. Wang, I.M. Reaney, Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications. J. Eur. Ceram. Soc. 42, 2820–2826 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.01.050

    Article  CAS  Google Scholar 

  7. J.H. Jean, T.K. Gupta, Design of low dielectric glass + ceramics for multilayer ceramic substrate. IEEE Trans. Comp. Packag. Manufact. Technol. 17, 228–233 (1994). https://doi.org/10.1109/96.330424

    Article  CAS  Google Scholar 

  8. T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram. Soc. 23, 2573–2578 (2003). https://doi.org/10.1016/S0955-2219(03)00177-8

    Article  CAS  Google Scholar 

  9. L. Li, Y. Wang, W. Xia, X. He, Z. Ping, Effects of Zn/Mg ratio on the microstructure and microwave dielectric properties of (Zn1 – xMgx)2SiO4 ceramics. J. Electron. Mater. 41, 684–688 (2012). https://doi.org/10.1007/s11664-011-1899-z

    Article  CAS  Google Scholar 

  10. Y. Guo, H. Ohsato, K.I. Kakimoto, Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc. 26, 1827–1830 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.008

    Article  CAS  Google Scholar 

  11. H. Wang, Q. Zhang, Y. Hui, H. Sun, Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process. Ceram. Int. 34, 1405–1408 (2008). https://doi.org/10.1016/j.ceramint.2007.05.001

    Article  CAS  Google Scholar 

  12. H.I. Hsiang, L.T. Mei, W.C. Liao, F.S. Yen, Crystallization behavior and dielectric properties of a new high dielectric constant low-temperature cofired ceramics material based on Nd2O3-TiO2-SiO2 glass-ceramics. J. Am. Ceram. Soc. 93, 1714–1717 (2010). https://doi.org/10.1111/j.1551-2916.2010.03655.x

    Article  CAS  Google Scholar 

  13. M.E. Fleet, X. Liu, High-pressure rare earth disilicates REE2Si2O7(REE = nd, Sm, Eu, Gd): type. J. Solid State Chem. 161, 166–172 (2001). https://doi.org/10.1006/jssc.2001.9315

    Article  CAS  Google Scholar 

  14. S. Thomas, V. Deepu, S. Uma, P. Mohanan, J. Philip, M.T. Sebastian, Preparation, characterization and properties of Sm2Si2O7 loaded polymer composites for microelectronic applications. Mater. Sci. Eng. B 163, 67–75 (2009). https://doi.org/10.1016/j.mseb.2009.05.007

    Article  CAS  Google Scholar 

  15. H. Ohsato, M. Terada, I. Kagomiya, K. Kawamura, K.I. Kakimoto, E.S. Kim, Sintering conditions of cordierite for microwave/millimeterwave dielectrics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1081–1085 (2008). https://doi.org/10.1109/TUFFC.2008.760

    Article  Google Scholar 

  16. H. Ohsato, J.S. Kim, A.Y. Kim, C.I. Cheon, K.W. Chae, Millimeter-wave dielectric properties of cordierite/indialite glass ceramics. Jpn J. Appl. Phys. 50, 01–05 (2011). https://doi.org/10.1143/JJAP.50.09NF01

    Article  CAS  Google Scholar 

  17. M. Terada, K. Kawamura, I. Kagomiya, K.I. Kakimoto, H. Ohsato, Effect of Ni substitution on the microwave dielectric properties of cordierite. J. Eur. Ceram. Soc. 27, 3045–3048 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.050

    Article  CAS  Google Scholar 

  18. K. Song, P. Liu, H. Lin, W. Su, J. Jiang, S. Wu, J. Wu, Z. Ying, H. Qin, Symmetry of hexagonal ring and microwave dielectric properties of (Mg1 – xLnx)2Al4Si5O18+x (ln = La, Sm) cordierite-type ceramics. J. Eur. Ceram. Soc. 36, 1167–1175 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.12.018

    Article  CAS  Google Scholar 

  19. X. Dong, C. Sun, H. Yang, L. Yang, S. Zhang, Influence of Mg2SiO4 addition on crystal structure and microwave properties of Mg2Al4Si5O18 ceramic system. J. Mater. Sci. : Mater. Electron. 29, 17967–17973 (2018). https://doi.org/10.1007/s10854-018-9912-4

    Article  CAS  Google Scholar 

  20. K. Song, S. Wu, P. Liu, H. Lin, Z. Ying, Phase composition and microwave dielectric properties of SrTiO3 modified Mg2Al4Si5O18 cordierite ceramics. J. Alloys Compd. 628, 57–62 (2015). https://doi.org/10.1016/j.jallcom.2014.12.199

    Article  CAS  Google Scholar 

  21. S. Wu, K. Song, P. Liu, H. Lin, F. Zhang, P. Zheng, H. Qin, Effect of TiO2 doping on the structure and microwave dielectric properties of cordierite ceramics. J. Am. Ceram. Soc. 98, 1842–1847 (2015). https://doi.org/10.1111/jace.13549

    Article  CAS  Google Scholar 

  22. J. Wei, P. Liu, H. Lin, Z. Ying, P. Zheng, W. Su, K. Song, H. Qin, Crystal structure and microwave dielectric properties of CaTiO3 modified Mg2Al4Si5O18 cordierite ceramics. J. Alloys Compd. 689, 81–86 (2016). https://doi.org/10.1016/j.jallcom.2016.07.119

    Article  CAS  Google Scholar 

  23. W. Lou, K. Song, F. Hussain, A. Khesro, J. Zhao, H.B. Bafrooei, T. Zhou, B. Liu, M. Mao, K. Xu, E. Taheri-nassaj, D. Zhou, S. Luo, S. Sun, H. Lin, D. Wang, Microwave dielectric properties of Mg1.8R0.2Al4Si5O18 (R = mg, ca, Sr, Ba, Mn, Co, Ni, Cu, Zn) cordierite ceramics and their application for 5G microstrip patch antenna. J. Eur. Ceram. Soc. 42, 2254–2260 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.050

    Article  CAS  Google Scholar 

  24. Z. Xiu, M. Mao, Z. Lu, Z. Huang, Z. Qi, H.B. Bafrooei, T. Zhou, D. Wang, H. Lin, E. Taheri-nassaj, K. Song, High-Q×f value and temperature stable Zn2+-Mn4+ cooperated modified cordierite-based microwave and millimeter-wave dielectric ceramics. J. Eur. Ceram. Soc. 42, 5712–5717 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.05.082

    Article  CAS  Google Scholar 

  25. E.P. Meagher, G.V. Gibbs, The polymorphism of cordierite: II. The crystal structure of indialite. Can. Miner. 15, 43–49 (1977)

    Google Scholar 

  26. R.W. Dupon, A.C. Tanous, M.S. Thompson, Kinetics and mechanism of the crystallization of Mg2Al4Si5O18 (cordierite) from magnesium aluminate (MgAl2O4) and silica in the presence of a bismuth oxide flux. Chem. Mater. 2, 728–731 (1990). https://doi.org/10.1021/cm00012a026

    Article  CAS  Google Scholar 

  27. M.K. Naskar, M. Chatterjee, A novel process for the synthesis of cordierite (Mg2Al4Si5O18) powders from rice husk ash and other sources of silica and their comparative study. J. Eur. Ceram. Soc. 24, 3499–3508 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.11.029

    Article  CAS  Google Scholar 

  28. T.T. Parlak, A.S. Demirkiran, Zeolite usage as source of silica to produce cordierite in MgO–Al2O3–SiO2 system. J. Adv. Ceram. 7, 370–379 (2018). https://doi.org/10.1007/s40145-018-0288-y

    Article  CAS  Google Scholar 

  29. Y. Xu, K. Zhang, L. Fu, T. Tong, L. Cao, Q. Zhang, L. Chen, Effect of MgO addition on sintering temperature, crystal structure, dielectric and ferroelectric properties of lead-free BZT ceramics. J. Mater. Sci. Mater. Electron. 30, 7582–7589 (2019). https://doi.org/10.1007/s10854-019-01073-x

    Article  CAS  Google Scholar 

  30. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  31. W. Lou, K. Song, F. Hussain, B. Liu, H.B. Bafrooei, H. Lin, W. Su, F. Shi, D. Wang, Bond characteristics and microwave dielectric properties of (Li0.5Ga0.5)2+ doped Mg2Al4Si5O18 ceramics. Ceram. Int. 46, 28631–28638 (2020). https://doi.org/10.1016/j.ceramint.2020.08.022

    Article  CAS  Google Scholar 

  32. N.E. Brese, M. O’Keeffe, Bond-valence parameters for solids. Acta Cryst. 47, 192–197 (1991). https://doi.org/10.1107/S0108768190011041

    Article  Google Scholar 

  33. E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 30, 1731–1736 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.12.018

    Article  CAS  Google Scholar 

  34. H. Ikawa, T. Otagiri, O. Imai, M. Suzuki, K. Urabe, S. Udagawa, Crystal structures and mechanism of thermal expansion of high cordierite and its solid solutions. J. Am. Ceram. Soc. 69, 492–498 (1986). https://doi.org/10.1111/j.1151-2916.1986.tb07451.x

    Article  CAS  Google Scholar 

  35. F. Wang, Y. Lai, Y. Zeng, F. Yang, B. Li, X. Yang, H. Su, J. Han, X. Zhong, Enhanced microwave dielectric properties in Mg2Al4Si5O18 through Cu2+ substitution. Eur. J. Inorg. Chem. 25, 2464–2470 (2021). https://doi.org/10.1002/ejic.202100174

    Article  CAS  Google Scholar 

  36. E. Ozel, S. Kurama, Effect of the processing on the production of cordierite–mullite composite. Ceram. Int. 36, 1033–1039 (2010). https://doi.org/10.1016/j.ceramint.2009.11.013

    Article  CAS  Google Scholar 

  37. B. Jancar, M. Valant, D. Suvorov, Solid-state reactions occurring during the synthesis of CaTiO3–NdAlO3 perovskite solid solutions. Chem. Mater. 16, 1075–1082 (2004). https://doi.org/10.1021/cm034972s

    Article  CAS  Google Scholar 

  38. B. Jancar, D. Suvorov, M. Valant, G. Drazic, Characterization of CaTiO3–NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 23, 1391–1400 (2003). https://doi.org/10.1016/S0955-2219(02)00359-X

    Article  CAS  Google Scholar 

  39. R.A. Cowley, G.J. Coombs, Paraelectric, piezoelectric and pyroelectric crystals: II phase transitions. J. Phys. C: Solid State Phys. 6, 143–157 (1973). https://doi.org/10.1088/0022-3719/6/1/025

    Article  CAS  Google Scholar 

  40. V.L. Gurevich, A.K. Tagantsev, Intrinsic dielectric loss in crystals. Adv. Phys. 40, 719–767 (1991). https://doi.org/10.1080/00018739100101552

    Article  CAS  Google Scholar 

  41. H. Li, F. Liu, S. Liu, Relationship between distortion of crystal structure and dielectric properties of complex perovskite oxide ba(Co,Zn)1/3Nb2/3O3 thin films. J. Eur. Ceram. Soc. 42, 6518–6526 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.07.024

    Article  CAS  Google Scholar 

  42. J.-W. Choi, R.B. Dover, Correlation between temperature coefficient of resonant frequency and tetragonality ratio. J. Am. Ceram. Soc. 89, 1144–1146 (2006). https://doi.org/10.1111/j.1551-2916.2005.00841.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the Natural Science Foundation of Hunan Province (Grant Nos. 2021JJ30831). The use of facilities in the State Key Laboratory for Powder Metallurgy at Central South University is acknowledged. The authors would also like to thank Chinese Academy of Science, Sharing Service Platform of CAS Large Research Infrastructure, Hefei National Synchrotron Radiation Laboratory.

Funding

This work was financial supported by the Natural Science Foundation of Hunan Province (Grant Nos. 2021JJ30831).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by FL and WR. The first draft of the manuscript was written by FL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shaojun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Ran, W., Li, H. et al. Relationship between crystal structure and dielectric properties of non-stoichiometric Mg2 +xAl4 +ySi5 +zO18-based microwave ceramics. J Mater Sci: Mater Electron 34, 152 (2023). https://doi.org/10.1007/s10854-022-09500-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09500-2

Navigation