Skip to main content
Log in

Fabrication of core–shell structured TiO2@Sb–SnO2 with improved electroconductivity

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

TiO2 can be integrated with antimony-doped tin oxide to obtain composite materials with high electroconductivity. Based on this, spherical TiO2@SbSnO2 (TSS) has been prepared by homogeneous precipitation combined with a high-temperature calcination process. The morphology, structure and composition of TSS were characterized by scanning electron microscope, Brunauer–Emmet–Teller surface area analyzer, X-ray diffractometer and transmission electron microscope with energy-dispersive X-ray spectrometer, respectively. Effects of dropping conditions, introducing sulfate, pH value, calcination temperature and holding time on the conductivity of TSS were investigated by measuring resistivity, Zeta potential and particle size, meanwhile the calcination action and conductive mechanism by thermogravimetric analysis, X-ray photoelectron spectroscopy and electron spin resonance. The results revealed that the core–shell structured TSS was formed, and the resistivity of composite powder was below 4.0 Ω cm under the optimum conditions. Our analysis indicates that the conductive channel mechanism is the main conductive mechanism of the as-prepared composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Purbia R, Paria S (2015) Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. Nanoscale 7:19789–19873

    CAS  Google Scholar 

  2. Bayal N, Jeevanandam P (2012) Synthesis of CuO@NiO core-shell nanoparticles by homogeneous precipitation method. J Alloy Compd 537:232–241

    CAS  Google Scholar 

  3. Kusiora A, Zycha L, Zakrzewskab K, Radecka M (2019) Photocatalytic activity of TiO2/SnO2 nanostructures with controlled dimensionality/complexity. Appl Surf Sci 471:973–985

    Google Scholar 

  4. Jia B, Cao P, Zhang H, Wang G (2019) Mesoporous amorphous TiO2 shell-coated ZIF-8 as an efficient and recyclable catalyst for transesterification to synthesize diphenyl carbonate. J Mater Sci 54:9466–9477. https://doi.org/10.1007/s10853-019-03595-5

    Article  CAS  Google Scholar 

  5. Yang S, Huang Y, Han G, Liu J, Cao Y (2017) Synthesis and electrochemical performance of double shell SnO2@amorphous TiO2 spheres for lithium ion battery application. Powder Technol 322:84–91

    CAS  Google Scholar 

  6. Zhang Q, Zhang W, Peng K (2019) In-situ synthesis and magnetic properties of core-shell structured Fe/Fe3O4 composites. J Magn Magn Mater 484:418–423

    CAS  Google Scholar 

  7. Zheng C, Wang Y, Phua SZF, Lim WQ, Zhao Y (2017) ZnO-DOX@ZIF-8 core–shell nanoparticles for pH-responsive drug delivery. ACS Biomater Sci Eng 3:2223–2229

    CAS  Google Scholar 

  8. Zhang S, Chen S, Yang F et al (2019) High-performance electrochromic device based on novel polyaniline nanofibers wrapped antimony-doped tin oxide/TiO2 nanorods. Org Electron 65:341–348

    CAS  Google Scholar 

  9. Li N, Li Y, Li W, Ji S, Jin P (2016) One-Step hydrothermal synthesis of TiO2@MoO3 core–shell nanomaterial: Microstructure, growth mechanism, and improved photochromic property. J Phys Chem C 120:3341–3349

    CAS  Google Scholar 

  10. Du Y, Yan J, Meng Q, Wang J, Dai H (2012) Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure. Mater Chem Phys 133:907–912

    CAS  Google Scholar 

  11. Hu Y, Zhong H, Wang Y, Lu L, Yang H (2018) TiO2/antimony-doped tin oxide: Highly water-dispersed nano composites with excellent IR insulation and super-hydrophilic property. Sol Energy Mater Solar Cells 174:499–508

    CAS  Google Scholar 

  12. Zhao N, He C, Liu J et al (2014) Dependence of catalytic properties of Al/Fe2O3 thermites on morphology of Fe2O3 particles in combustion reactions. J Solid State Chem 219:67–73

    CAS  Google Scholar 

  13. Li YQ, Mei SG, Byon YJ, Wang JL, Zhang GL (2013) Highly solar radiation reflective Cr2O3–3TiO2 orange nanopigment prepared by a polymer-pyrolysis method. ACS Sustain Chem Eng 2:318–321

    Google Scholar 

  14. Hu P, Yang H, Ouyang J (2012) Synthesis and characterization of Sb-SnO2/kaolinites nanoparticles. Appl Clay Sci 55:151–157

    CAS  Google Scholar 

  15. Wang LS, Lu HF, Hong RY, Feng WG (2012) Synthesis and electrical resistivity analysis of ATO-coated talc. Powder Technol 224:124–128

    CAS  Google Scholar 

  16. Hu Y, Zhang H, Yang H (2008) Synthesis and electrical property of antimony-doped tin oxide powders with barite matrix. J Alloy Compd 453:292–297

    CAS  Google Scholar 

  17. Li X, Qian JH, Xu JS, Sun YD, Liu L (2019) Synthesis and electrical properties of antimony-doped tin oxide-coated TiO2 by polymeric precursor method. Mat Sci Semicon Proc 98:70–76

    CAS  Google Scholar 

  18. Yu H, Chen F, Ye L, Zhou H, Zhao T (2019) Enhanced photocatalytic degradation of norfloxacin under visible light by immobilized and modified In2O3/TiO2 photocatalyst facilely synthesized by a novel polymeric precursor method. J Mater Sci 54:10191–10203. https://doi.org/10.1007/s10853-019-03636-z

    Article  CAS  Google Scholar 

  19. Sladkevich S, Kyi N, Gun J, Prikhodchenko P, Ischuk S, Lev O (2011) Antimony doped tin oxide coating of muscovite clays by the Pechini route. Thin Solid Films 520:152–158

    CAS  Google Scholar 

  20. Liu H, Zhang J, Gou J, Sun Y (2017) Preparation of Fe2O3/Al composite powders by homogeneous precipitation method. Adv Powder Technol 28:3241–3246

    CAS  Google Scholar 

  21. Montañez MK, Molina R, Moreno S (2014) Nickel catalysts obtained from hydrotalcites by coprecipitation and urea hydrolysis for hydrogen production. Int J Hydrogen Energ 39:8225–8237

    Google Scholar 

  22. Villegas M, Sierra T, Caballero AC, Fernandez JF (2007) Ti-based nanocoatings on Al2O3 powders. Ceram Int 33:875–878

    CAS  Google Scholar 

  23. Yang Z, Qi Y, Zhang J (2019) A novel perspective for reflective cooling composites: influence of the difference between the effective refractive index of polymeric matrix and inorganic functional particles. Constr Build Mater 223:928–938

    CAS  Google Scholar 

  24. Schwindt N, Pidoll U, Markus D, Klausmeyer U, Papalexandris MV, Grosshans H (2017) Measurement of electrostatic charging during pneumatic conveying of powders. J Loss Prev Proc 49:461–471

    Google Scholar 

  25. Wang C, Wang D, Yang R, Wang H (2019) Preparation and electrical properties of wollastonite coated with antimony-doped tin oxide nanoparticles. Powder Technol 342:397–403

    CAS  Google Scholar 

  26. Li X, Qian JH, Xu JS, Xing JJ, Tao E (2018) Synthesis, characterization and electrical properties of TiO2 modified with SiO2 and antimony-doped tin oxide. J Mater Sci Mater El 29:12100–12108

    CAS  Google Scholar 

  27. Heller A, Jarvis K, Coffman SS (2018) Association of type 2 diabetes with submicron titanium dioxide crystals in the pancreas. Chem Res Toxicol 31:506–509

    CAS  Google Scholar 

  28. Wang Y, Jamal R, Wang M, Yang L, Liu F, Abdiryim T (2017) A donor-acceptor-donor-type conjugated polymer-modified TiO2 with enhanced photocatalytic activity under simulated sunlight and natural sunlight. J Mater Sci 52:4820–4832. https://doi.org/10.1007/s10853-016-0717-7

    Article  CAS  Google Scholar 

  29. Redmond PL, Hallock AJ, Brus LE (2005) Electrochemical ostwald ripening of colloidal Ag particles on conductive substrates. Nano Lett 5:131–135

    CAS  Google Scholar 

  30. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    CAS  Google Scholar 

  31. Flahaut E, Peigney A, Laurent C, Marlière C, Chastel F, Rousset A (2000) Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater 48:3803–3812

    CAS  Google Scholar 

  32. Rockenberger J, Uz F, Tischer M, Tröger L (2000) Near edge X-ray absoption fine structure measurements and extended X-ray absorption fine structure measurements of the valence state and coordination of antimony in doped nanocrystalline SnO2. J Chem Phys 112:4292–4304

    Google Scholar 

  33. Siciliano P (2000) Preparation, characterisation and applications of thin films for gas sensors prepared by cheap chemical method. Sens Actuat B Chem 70:153–164

    CAS  Google Scholar 

  34. Sun K, Liu J, Browning ND (2002) Correlated atomic resolution microscopy and spectroscopy studies of Sn(Sb)O2 nanophase catalysts. J Catal 205:266–277

    CAS  Google Scholar 

  35. Tian BZ, Li CZ, Zhang JL (2012) One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem Eng J 191:402–409

    CAS  Google Scholar 

  36. Wan HC, Yao WT, Zhu WK, Tang Y, Ge HL, Shi XZ, Duan T (2018) Fe-N co-doped SiO2@TiO2 yolk–shell hollow nanospheres with enhanced visible light photocatalytic degradation. Appl Surf Sci 444:355–363

    CAS  Google Scholar 

  37. Li XY, Wu Y, Zhu W, Xue FQ, Qian Y, Wang CW (2016) Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2–Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields. Electrochim Acta 220:276–284

    CAS  Google Scholar 

  38. Ou G, Xu Y, Wen B et al (2018) Tuning defects in oxides at room temperature by lithium reduction. Nat Commun 9:1302–1310

    Google Scholar 

  39. Cui YH, Feng YJ, Liu ZQ (2009) Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb–SnO2 electrodes. Electrochim Acta 54(21):4903–4909

    CAS  Google Scholar 

  40. Hu P, Yang H (2010) Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles. Appl Clay Sci 48:368–374

    CAS  Google Scholar 

  41. Baena JPC, Agrios AG (2014) Transparent conducting aerogels of antimony-doped tin oxide. ACS Appl Mater Interfaces 6:19127–19134

    Google Scholar 

  42. Hek HD, Stol RJ, Bruyn PLD (1978) Hydrolysis-precipitation studies of aluminum(III) solutions. 3. The role of the sulfate ion. J Colloid Interf Sci 64:72–89

    Google Scholar 

  43. Colemana JP, Freeman JJ, Madhukar P, Wagenknecht JH (1999) Electrochromism of nanoparticulate-doped metal oxides: optical and material properties. Displays 20:145–154

    Google Scholar 

  44. Wen L, Sun X, Xiu Z, Chen S, Tsai C-T (2004) Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics. J Eur Ceram Soc 24:2681–2688

    CAS  Google Scholar 

  45. Lv Y, Zhang W, Liu H, Sang Y, Qin H, Tan J, Tong L (2012) Synthesis of nano-sized and highly sinterable Nd:YAG powders by the urea homogeneous precipitation method. Powder Technol 217:140–147

    CAS  Google Scholar 

  46. Tan J, Shen L, Fu X, Hou W, Chen X (2004) Preparation of nanometer-sized (1−x)SnO2·xSb2O3 conductive pigment powders and the hydrolysis behavior of urea. Dyes Pigm 61:31–38

    CAS  Google Scholar 

  47. Huo W, Zhang X, Gan K, Chen Y, Xu J, Yang J (2019) Effect of zeta potential on properties of foamed colloidal suspension. J Eur Ceram Soc 39:574–583

    CAS  Google Scholar 

  48. Beliatis MJ, Martin NA, Leming EJ, Silva SRP, Henley SJ (2011) Laser ablation direct writing of metal nanoparticles for hydrogen and humidity sensors. Langmuir 27:1241–1244

    CAS  Google Scholar 

  49. Yanagi K, Udoguchi H, Sagitani S et al (2010) Transport mechanisms in metallic and semiconducting single-wall carbon nanotube networks. ACS Nano 4:4027–4032

    CAS  Google Scholar 

  50. Peng Q, Kalanyan B, Hoertz PG et al (2013) Solution-processed, antimony-doped tin oxide colloid films enable high-performance TiO2 photoanodes for water splitting. Nano Lett 13:1481–1488

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 21878024) and Innovation Team Project of Liaoning Province (Nos. LT2015001 and 2018479-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 647 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qian, J., Xing, J. et al. Fabrication of core–shell structured TiO2@Sb–SnO2 with improved electroconductivity. J Mater Sci 55, 3871–3883 (2020). https://doi.org/10.1007/s10853-019-04229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04229-6

Navigation