Skip to main content
Log in

Novel β-ketoenamines versus azomethines for organic electronics: characterization of optical and electrochemical properties supported by theoretical studies

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple and rapid synthesis of six new, stable β-ketoenamines by coupling 3-amino-1,8-naphthalimide derivatives with 2-(4-pyrimidinyl)-malondialdehyde in the presence of trifluoroacetic acid was developed. Two of the synthesized 3-amino-1,8-naphthalimide derivatives were condensed with 9H-fluorene-2-carboxaldehyde, resulting in azomethine products. The structure of obtained compounds was confirmed by 1H and 13C NMR, COSY, HMQC, FTIR spectroscopy and elemental analysis. The photophysical, electrochemical and thermal properties of the compounds were investigated. Additionally, calculations using density functional theory were performed to obtain the optimized ground-state geometry and distribution of the HOMO and LUMO levels as well as UV–Vis and photoluminescence spectra of the synthesized compounds. DSC measurements revealed that the compounds form amorphous material with glass transition temperature in the range of 41–146 °C and are thermally stable up to 300 °C. β-Ketoenamines have higher glass transition temperature, smaller energy gap (2.11–2.47 eV), higher PL quantum efficiency in solution (5.25–12.97%) and ability to aggregation-induced emission than the azomethines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Do TT, Takeda Y, Manzhos S, Bell J, Tokito S, Sonar P (2018) Naphthalimide end capped anthraquinone based solution-processable n-channel organic semiconductors: effect of alkyl chain engineering on charge transport. J Mater Chem C 6:3774–3786

    CAS  Google Scholar 

  2. Sonalin S, Sakthivel K, Nagarajan S (2018) Functionalization of 1, 8-naphthalimides—an approach towards air-stable n-type organic semiconductors. Mater Today Proc 5:16592–16597. https://doi.org/10.1016/j.matpr.2018.06.016

    Article  CAS  Google Scholar 

  3. Kolosov D, Adamovich V, Djurovich P, Thompson ME, Adachi Ch (2002) 1,8-Naphthalimides in phosphorescent organic LEDs: the interplay between dopant, exciplex, and host emission. J Am Chem Soc 124:9945–9954

    CAS  Google Scholar 

  4. Zeng W, Lai HY, Lee WK, Jiao M, Shiu YJ, Zhong Ch, Gong S, Zhou T, Xie G, Sarma M, Wong KT, Wu ChCh, Yang Ch (2018) Achieving nearly 30% external quantum efficiency for orange-red organic light emitting diodes by employing thermally activated delayed fluorescence emitters composed of 1,8-naphthalimide-acridine hybrids. Adv Mater 30:1704961

    Google Scholar 

  5. Schab-Balcerzak E, Siwy M, Filapek M, Kula S, Malecki JG, Laba K, Lapkowski M, Janeczek H, Domanski M (2015) New core-substituted with electron-donating group 1,8-naphthalimides towards optoelectronic applications. J Lumin 166:22–39

    CAS  Google Scholar 

  6. Kotowicz S, Korzec M, Siwy M, Golba S, Małecki JG, Janeczek H, Maćkowski S, Bednarczyk K, Libera M, Schab-Balcerzak E (2018) Novel 1,8-naphthalimides substituted at 3-C position: synthesis and evaluation of thermal, electrochemical and luminescent properties. Dyes Pigm 158:65–78

    CAS  Google Scholar 

  7. Zhang J, Xiao H, Zhang X, Wu Y, Li G, Li C, Chen X, Ma W, Bo Z (2016) 1,8-Naphthalimide-based nonfullerene acceptors for wide optical band gap polymer solar cells with an ultrathin active layer thickness of 35 nm. J Mater Chem C 4:5656–5663

    CAS  Google Scholar 

  8. Gautam P, Sharma R, Misra R, Keshtov ML, Kuklin SA, Sharma GD (2017) Donor–acceptor–acceptor (D–A–A) type 1,8-naphthalimides as non-fullerene small molecule acceptors for bulk heterojunction solar cells. Chem Sci 8:2017–2024

    CAS  Google Scholar 

  9. Zhang J, Zhang X, Xiao H, Li G, Liu Y, Li C, Huang H, Chen X, Bo Z (2016) 1,8-naphthalimide-based planar small molecular acceptor for organic solar cells. ACS Appl Mater Interfaces 8:5475–5483

    CAS  Google Scholar 

  10. Zhu M, Miao J, Hu Z, Chen Y, Liu M, Murtaza I, Meng H (2017) A novel A–D–A small molecule with 1,8-naphthalimide as a potential non-fullerene acceptor for solution processable solar cells. Dyes Pigm 142:39–50

    CAS  Google Scholar 

  11. Banerjee S, Veale EB, Phelan CM, Murphy SA, Tocci GM, Gillespie LJ, Frimannsson DO, Kelly JM, Gunnlaugsson T (2013) Recent advances in the development of 1,8-naphthalimide based DNA targeting binders anticancer and fluorescent cellular imaging agents. Chem Soc Rev 42:1601–1618

    CAS  Google Scholar 

  12. Wang L, Fujii M, Yamaji M, Okamoto H (2018) Fluorescence behaviour of 2-, 3- and 4-amino-1,8-naphthalimides: effects of the substitution positions of the amino functionality on the photophysical properties. Photochem Photobiol Sci 17:1319–1328

    CAS  Google Scholar 

  13. Gopikrishna P, Meher N, Iyer PK (2018) Functional 1,8-naphthalimide AIE/AIEEgens: recent advances and prospects. ACS Appl Mater Interfaces 10:12081–12111

    CAS  Google Scholar 

  14. Quaquebeke EV, Mahieu T, Dumont P, Dewelle J, Ribaucour F, Simon G, Sauvage S, Gaussin JF, Tuti J, Yazidi ME, Vynckt FV, Mijatovic T, Lefranc F, Darro F, Kiss R (2007) 2,2,2-Trichloro-N-({2-[2-(dimethylamino)ethyl]-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin 5-yl}carbamoyl)acetamide (UNBS3157), a novel nonhematotoxic naphthalimide derivative with potent antitumor activity. J Med Chem 50:4122–4134

    Google Scholar 

  15. Kascheres CM (2003) The chemistry of enaminones, diazocarbonyls and small rings: our contribution. J Braz Chem Soc 6:945–969

    Google Scholar 

  16. Romero-Fernández MP, Ávalos M, Babiano R, Cintas P, Jiménez JL, Light ME, Palaciosa JC (2014) Pseudo-cyclic structures of mono- and di-azaderivatives of malondialdehydes Synthesis and conformational disentanglement by computational analyses. Org Biomol Chem 12:8997–9010

    Google Scholar 

  17. Singh V, Jang S, Vishwakarma NK, Kim DP (2018) Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique. NPG Asia Mater 10:e456. https://doi.org/10.1038/am.2017.209

    Article  Google Scholar 

  18. Kong W, Wan J, Namuangruk S, Guo J, Wang Ch (2018) Water-soluble metalated covalent organic nanobelts with improved bioavailability for protein transportation. Sci Rep 8:5529. https://doi.org/10.1038/s41598-018-23744-1

    Article  CAS  Google Scholar 

  19. Daugherty MC, Vitaku E, Li RL, Evans AM, Chavez AD, Dichtel WR (2019) Improved synthesis of b-ketoenamine-linked covalent organic frameworks via monomer exchange reactions. ChemComm 55:2680–2683

    CAS  Google Scholar 

  20. Vitaku E, Dichtel WR (2017) Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J Am Chem Soc 139:12911–12914

    CAS  Google Scholar 

  21. Chaia S, Liu H, Zhang X, Han Y, Hu N, Wei L, Cong F, Wei H, Wang L (2016) Synthesis of a novel β-ketoenamine-linked conjugated microporous polymer with NH functionalized pore surface for carbon dioxide capture. Appl Surf Sci 384:539–543

    Google Scholar 

  22. Sedgwick AC, Wu L, Han HH, Bull SD, He HP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J (2018) Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev 47:8842–8880

    CAS  Google Scholar 

  23. Olyaei A, Javarsineh S, Sadeghpour M (2018) Green synthesis and Z/E-isomerization of novel coumarin enamines induced by organic solvents. Chem Heterocycl Compd 54:934–939

    CAS  Google Scholar 

  24. Deng D, Xiao L, Chung IM, Kim IS, Gopiraman M (2017) Industrial-quality graphene oxide switched highly efficient metal and solvent-free synthesis of β-ketoenamines under feasible conditions. ACS Sustain Chem Eng 5:253–1259

    Google Scholar 

  25. Liu JY, Cao GE, Xu W, Cao J, Wang WL (2010) Ni(OAc)2: a highly efficient catalyst for the synthesis of enaminone and enamino ester derivatives under solvent-free conditions. Appl Organomet Chem 24:685–691

    CAS  Google Scholar 

  26. Martınez RF, Avalos M, Babiano R, Cintas P, Jimenez JL, Lightb ME, Palacios JC (2011) Tautomerism in Schiff bases. The cases of 2-hydroxy-1-naphthaldehyde and 1-hydroxy-2-naphthaldehyde investigated in solution and the solid state. Org Biomol Chem 9:8268–8275

    Google Scholar 

  27. Rauf MA, Hisaindee S, Saleh N (2015) Spectroscopic studies of keto–enol tautomeric equilibrium of azo dyes. RSC Adv 5:18097–18110

    CAS  Google Scholar 

  28. Qina X, Dinga G, Wanga Z, Zhanga S, Lia H, Luoa Z, Gaoa F (2017) Remarkable difference between five- and six- number-membered ring transition states for intramolecular proton transfer in excited state. J Photochem Photobiol, A 330:25–35

    Google Scholar 

  29. Afonin AV, Pavlov DV, Vashchenko AV (2019) Case study of 2-vinyloxypyridine: quantitative assessment of the intramolecular CeH/N hydrogen bond energy and its contribution to the one-bond 13Ce1. J Mol Struct 1176:73–85

    CAS  Google Scholar 

  30. Shirota Y (2005) Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J Mater Chem 15:75–93

    CAS  Google Scholar 

  31. Shitota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010

    Google Scholar 

  32. Yin SW, Shuai Z, Wang Y (2003) A quantitative structure-property relationship study of the glass transition temperature of OLED materials. J Chem Inf Comput Sci 43:970–977

    CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Nakatsuji J, Cheeseman R, Scalmani G, Barone V, Mennucci B, Petersson GA, Caricato HM, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehar M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2016) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  34. O’boyle NM, Tenderholt, Langner KM, Langner KM (2008) cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Google Scholar 

  35. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  36. Barone V, Cossi M (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210–3221

    CAS  Google Scholar 

  37. Yadav BS, Singh V (1999) Spectral investigations and thermodynamic functions of 4-hydroxy-2-mercapto-6-propylpyrimidine. Spectrochim Acta, Part A 55:1267–1278

    Google Scholar 

  38. Asiri AM, Badahdah KO (2007) Synthesis of some new anils: part 1. Reaction of 2-hydroxy-benzaldehyde and 2-hydroxynaphthaldehyde with 2-aminopyridene and 2-aminopyrazine. Molecules 12:1796–1804

    CAS  Google Scholar 

  39. Zutterman F, Louant O, Mercier G, Leyssens T, Champagne B (2018) Predicting keto − enol equilibrium from combining UV/visible absorption spectroscopy with quantum chemical calculations of vibronic structures for many excited states. A case study on salicylideneanilines. J Phys Chem A 122:5370–5374

    CAS  Google Scholar 

  40. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    CAS  Google Scholar 

  41. Takagi K, Yamada Y, Fukuda R, Ehara M, Takeuchi D (2018) ESIPT emission behavior of methoxy-substituted 2-hydroxyphenylbenzimidazole isomers. New J Chem 42:5923–5928

    CAS  Google Scholar 

  42. Padalkar VS, Sakamaki D, Kuwada K, Tohnai N, Akutagawa T, Sakaid K, Seki S (2016) AIE active triphenylamine–benzothiazole based motifs: ESIPT or ICT emission. RSC Adv 6:26941–26949

    CAS  Google Scholar 

  43. Qina X, Dinga G, Wanga Z, Zhanga S, Lia H, Luoa Z, Gaoa F (2017) Remarkable difference between five- and six- number-membered ring transition states for intramolecular proton transfer in excited state. J Photochem Photobiol A Chem 339:25–35

    Google Scholar 

  44. Li Ch, Li D, Shi Y, Liu Y (2018) Excited-state intramolecular proton transfer in non-fused five- and fused six-membered ring pyrrole-pyridine hydrogen bond systems. Org Electron 54:177–183

    CAS  Google Scholar 

  45. Padalkar VS, Seki S (2016) Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem Soc Rev 45:169–202

    CAS  Google Scholar 

  46. Kenfack CA, Klymchenko AS, Duportail G, Burgerc A, Melya Y (2012) Ab initio study of the solvent H-bonding effect on ESIPT reaction and electronic transitions of 3-hydroxychromone derivatives. Phys Chem Chem Phys 14:8910–8918

    CAS  Google Scholar 

  47. Wiethaus G, Toldo JM, Santos FS, Duarte RC, Gonçalves PFB, Rodembusch FS (2019) Experimental and theoretical investigation of long-wavelength fluorescence emission in push–pull benzazoles: intramolecular proton transfer or charge transfer in the excited state? Phys Chem Chem Phys 21:4408–4420

    CAS  Google Scholar 

  48. Georgiev NI, Krasteva PV, Bojinov VB (2019) A ratiometric 4-amido-1,8-naphthalimide fluorescent probe based on excimer-monomer emission for determination of pH and water content in organic solvents. J Lumin 212:271–278

    CAS  Google Scholar 

  49. Uhler B, Ivanov MV, Kokkin D, Reilly N, Rathore R, Reid SA (2017) Effect of facial encumbrance on excimer formation and charge resonance stabilization in model bichromophoric assemblies. J Phys Chem C 121:15580–15588

    CAS  Google Scholar 

  50. Mai S, Ashwood B, Marquet P, Crespo-Hernandez CE, Gonzalez L (2017) Solvatochromic effects on the absorption spectrum of 2-Thiocytosine. J Phys Chem B 121:5187–5196

    CAS  Google Scholar 

  51. Chipem FAS, Mishra A, Krishnamoorthy G (2012) The role of hydrogen bonding in excited state intramolecular charge transfer. Phys Chem Chem Phys 14:8775–8790

    CAS  Google Scholar 

  52. Li H, Ma L, Yin H, Shi Y (2018) Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule. Chin Phys B 9:1–6

    Google Scholar 

  53. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115:11718–11940

    CAS  Google Scholar 

  54. Hong Y, Lama JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 29:4332–4353. https://doi.org/10.1039/b904665h

    Article  CAS  Google Scholar 

  55. Chen Y, Lam JWY, Kwok RTK, Liu B, Tang BZ (2019) Aggregation-induced emission: fundamental understanding and future developments. Mater Horiz 6:428–433

    CAS  Google Scholar 

  56. Xue P, Sun J, Chen P, Gong P, Yao B, Zhang Z, Qiana Ch, Lu R (2015) Strong solid emission and mechanofluorochromism of carbazole-based terephthalate derivatives adjusted by alkyl chains. J Mater Chem C 3:4086–4092

    CAS  Google Scholar 

  57. Zhu X, Liu R, Li Y, Huang H, Wang Q, Wang D, Zhu X, Liuc S, Zhu H (2014) An AIE-active boron-difluoride complex: multi-stimuli-responsive fluorescence and application in data security protection. Chem Commun 50:12951–12954

    CAS  Google Scholar 

  58. Gan X, Liu G, Chu M, Xi W, Ren Z, Zhang X, Tian Y, Zhou H (2017) Intermolecular interactions boost aggregation induced emission in carbazole Schiff base derivatives. Org Biomol Chem 15:256–264

    CAS  Google Scholar 

  59. Pramanik B, Das D (2018) Aggregation-induced emission or hydrolysis by water? The case of Schiff bases in aqueous organic solvents. J Phys Chem C 122:3655–3661

    CAS  Google Scholar 

Download references

Acknowledgements

Calculations have been carried out using resources provided by Wroclaw Centre for Networking and Supercomputing (http://wcss.pl), Grant No. 18.

Author information

Authors and Affiliations

Authors

Contributions

MK conceived and designed the experiments. MK, SK, RRK and MC performed the experiments. MK, ESB, JGM and MC analyzed the data. MK, ESB, JGM and MŁ wrote the paper.

Corresponding author

Correspondence to Mateusz Korzec.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 16886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korzec, M., Kotowicz, S., Rzycka-Korzec, R. et al. Novel β-ketoenamines versus azomethines for organic electronics: characterization of optical and electrochemical properties supported by theoretical studies. J Mater Sci 55, 3812–3832 (2020). https://doi.org/10.1007/s10853-019-04210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04210-3

Navigation