Skip to main content
Log in

Influence of polymer molecular weight on the properties of in situ synthesized silver–methylcellulose nanocomposite films with a CO2 laser

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We investigate the influence of polymer molecular weight on the properties of silver–methylcellulose (Ag–MC) nanocomposite films synthesized by the irradiation of a CO2 laser. Although the reduction power of MC with a smaller molecular weight turns out to be stronger than that with a larger molecular weight in the solution phase, we do not see such a clear difference when MC is in the matrix phase. For the 30 s irradiation at the laser power of 0.8 W, the size of Ag nanoparticles (NPs) in the two types of MC matrix is similar, and it is about 30 nm. However, for the longer irradiation time at the same laser power, aggregation of Ag NPs set in, and it is more serious for the Ag–MC film with MC of larger molecular weight. We also carry out the antibacterial test with the Ag–MC films, and find that the Ag–MC film synthesized at the lower laser power and shorter irradiation time generally exhibits a stronger antibacterial effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sih BC, Wolf MO (2005) Metal nanoparticle—conjugated polymer nanocomposites. Chem Commun 27:3375–3384. https://doi.org/10.1039/b501448d

    Article  CAS  Google Scholar 

  2. Ramesh GV, Porel S, Radhakrishnan TP (2009) Polymer thin films embedded with in situ grown metal nanoparticles. Chem Soc Rev 38:2646–2656. https://doi.org/10.1039/b815242j

    Article  CAS  Google Scholar 

  3. Faupel F, Zaporojtchenko V, Strunskus T, Elbahri M (2010) Metal-polymer nanocomposites for functional applications. Adv Eng Mater 12:1177–1190. https://doi.org/10.1002/adem.201000231

    Article  CAS  Google Scholar 

  4. Mbhele ZH, Salemane MG, Van Sittert CGCE et al (2003) Fabrication and characterization of silver—polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  5. Khanna PK, Singh N, Charan S et al (2005) Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater Chem Phys 93:117–121. https://doi.org/10.1016/j.matchemphys.2005.02.029

    Article  CAS  Google Scholar 

  6. Xu P, Han X, Zhang B et al (2014) Multifunctional polymer—metal nanocomposites via direct chemical reduction by conjugated polymers. Chem Soc Rev 43:1349–1360. https://doi.org/10.1039/c3cs60380f

    Article  CAS  Google Scholar 

  7. Pucci A, Bernabo M, Elvati P et al (2006) Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers. J Mater Chem 16:1058–1066. https://doi.org/10.1039/b511198f

    Article  CAS  Google Scholar 

  8. Sakamoto M, Tachikawa T, Fujitsuka M, Majima T (2006) Acceleration of laser-induced formation of gold nanoparticles in a poly (vinyl alcohol) film. Langmuir 22:6361–6366

    Article  CAS  Google Scholar 

  9. Lee CJ, Karim MR, Lee MS (2007) Synthesis and characterization of silver/thiophene nanocomposites by UV-irradiation method. Mater Lett 61:2675–2678. https://doi.org/10.1016/j.matlet.2006.10.021

    Article  CAS  Google Scholar 

  10. Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C Photochem Rev 10:33–56. https://doi.org/10.1016/j.jphotochemrev.2008.11.002

    Article  CAS  Google Scholar 

  11. Jiang T, Li J, Zhang L et al (2014) Microwave assisted in situ synthesis of Ag-NaCMC films and their reproducible surface-enhanced Raman scattering signals. J Alloys Compd 602:94–100

    Article  CAS  Google Scholar 

  12. Porel S, Singh S, Harsha SS et al (2005) Nanoparticle-embedded polymer. in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem Mater 17:9–12

    Article  CAS  Google Scholar 

  13. Kashihara K, Uto Y, Nakajima T (2018) Rapid in situ synthesis of polymer-metal nanocomposite films in several seconds using a CO2 laser. Sci Rep 8:14719. https://doi.org/10.1038/s41598-018-33006-9

    Article  CAS  Google Scholar 

  14. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  15. Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154. https://doi.org/10.1039/c6nr03054h

    Article  CAS  Google Scholar 

  16. Van Rie J, Thielemans W (2017) Cellulose–gold nanoparticle hybrid materials. Nanoscale 9:8525–8554. https://doi.org/10.1039/c7nr00400a

    Article  CAS  Google Scholar 

  17. Zhang BT, Wang W, Zhang D et al (2010) Biotemplated synthesis of gold nanoparticle—bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160. https://doi.org/10.1002/adfm.200902104

    Article  CAS  Google Scholar 

  18. Yan W, Chen C, Wang L et al (2016) Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity. Carbohydr Polym 140:66–73

    Article  CAS  Google Scholar 

  19. Koga H, Tokunaga E, Hidaka M et al (2010) Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers. Chem Commun 46:8567–8569. https://doi.org/10.1039/c0cc02754e

    Article  CAS  Google Scholar 

  20. Li X, Chen S, Hu W et al (2009) In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydr Polym 76:509–512. https://doi.org/10.1016/j.carbpol.2008.11.014

    Article  CAS  Google Scholar 

  21. Li R, He M, Li T, Zhang L (2015) Preparation and properties of cellulose/silver nanocomposite fibers. Carbohydr Polym 115:269–275. https://doi.org/10.1016/j.carbpol.2014.08.046

    Article  CAS  Google Scholar 

  22. Liou P, Xavier F, Kong F et al (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650. https://doi.org/10.1016/j.carbpol.2016.10.031

    Article  CAS  Google Scholar 

  23. Galland S, Andersson RL, Salajkova M et al (2013) Cellulose nanofibers decorated with magnetic nanoparticles—synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker. J Mater Chem C 1:7963–7972. https://doi.org/10.1039/c3tc31748j

    Article  CAS  Google Scholar 

  24. Lukach A, Therien-Aubin H, Querejeta-Fernandez A et al (2015) Coassembly of gold nanoparticles and cellulose nanocrystals in composite films. Langmuir 31:5033–5041. https://doi.org/10.1021/acs.langmuir.5b00728

    Article  CAS  Google Scholar 

  25. Bhui DK, Pyne S, Sarkar P et al (2011) Temperature controlled synthesis of silver nanostructures of variable morphologies in aqueous methyl cellulose matrix. J Mol Liq 158:170–174. https://doi.org/10.1016/j.molliq.2010.11.014

    Article  CAS  Google Scholar 

  26. Mahanta N, Valiyaveettil S (2012) In situ preparation of silver nanoparticles on biocompatible methacrylated poly (vinyl alcohol) and cellulose based polymeric nanofibers. RSC Adv 2:11389–11396. https://doi.org/10.1039/c2ra20637d

    Article  CAS  Google Scholar 

  27. Kumar A, Negi YS, Bhardwaj NK, Choudhary V (2012) Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydr Polym 88:1364–1372. https://doi.org/10.1016/j.carbpol.2012.02.019

    Article  CAS  Google Scholar 

  28. Maity D, Mollick MMR, Mondal D et al (2012) Synthesis of methylcellulose-silver nanocomposite and investigation of mechanical and antimicrobial properties. Carbohydr Polym 90:1818–1825. https://doi.org/10.1016/j.carbpol.2012.07.082

    Article  CAS  Google Scholar 

  29. Xu W, Xu Q, Huang Q et al (2015) Electrically conductive silver nanowires- filled methylcellulose composite transparent films with high mechanical properties. Mater Lett 152:173–176. https://doi.org/10.1016/j.matlet.2015.03.111

    Article  CAS  Google Scholar 

  30. Nasatto PL, Pignon F, Silveira JLM et al (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers (Basel) 7:777–803. https://doi.org/10.3390/polym7050777

    Article  CAS  Google Scholar 

  31. Aziz SB, Rasheed MA, Ahmed HM (2017) Synthesis of Polymer Nanocomposites Based on [Methyl Cellulose](1−x):(CuS)x(0.02 M < x<0.08 M) with Desired Optical Band Gaps. Polymers (Basel) 9:194. https://doi.org/10.3390/polym9060194

    Article  CAS  Google Scholar 

  32. Kolarova K, Samec D, Kvitek O et al (2017) Preparation and characterization of silver nanoparticles in methyl cellulose matrix and their antibacterial activity. Jpn J Appl Phys. https://doi.org/10.7567/JJAP.56.06GG09

    Article  Google Scholar 

  33. Nunes MR, Castilho MDSM, de Lima Veeck AP et al (2018) Antioxidant and antimicrobial methylcellulose films containing Lippia alba extract and silver nanoparticles. Carbohydr Polym 192:37–43. https://doi.org/10.1016/j.carbpol.2018.03.014

    Article  CAS  Google Scholar 

  34. Chen J, Wang J, Zhang X, Jin Y (2008) Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys 108:421–424. https://doi.org/10.1016/j.matchemphys.2007.10.019

    Article  CAS  Google Scholar 

  35. Rangelova N, Aleksandrov L, Angelova T et al (2014) Preparation and characterization of SiO2/CMC/Ag hybrids with antibacterial properties. Carbohydr Polym 101:1166–1175

    Article  CAS  Google Scholar 

  36. Shi D, Wang F, Lan T et al (2016) Convenient fabrication of carboxymethyl cellulose electrospun nanofibers functionalized with silver nanoparticles. Cellulose 23:1899–1909. https://doi.org/10.1007/s10570-016-0918-x

    Article  CAS  Google Scholar 

  37. Park JS, Kim T, Kim WS (2017) Conductive cellulose composites with low percolation threshold for 3D printed electronics. Sci Rep 7:3246. https://doi.org/10.1038/s41598-017-03365-w

    Article  CAS  Google Scholar 

  38. Cheng F, Betts JW, Kelly SM et al (2013) Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chem 15:989–998. https://doi.org/10.1039/c3gc36831a

    Article  CAS  Google Scholar 

  39. Saha NR, Sarkar G, Roy I et al (2016) Nanocomposite films based on cellulose acetate/polyethylene glycol/modified montmorillonite as nontoxic active packaging material. RSC Adv 6:92569–92578. https://doi.org/10.1039/C6RA17300D

    Article  CAS  Google Scholar 

  40. Luo C, Zhang Y, Zeng X et al (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288:444–448. https://doi.org/10.1016/j.jcis.2005.03.005

    Article  CAS  Google Scholar 

  41. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716. https://doi.org/10.1016/j.actbio.2007.11.006

    Article  CAS  Google Scholar 

  42. Suflet DM, Chitanu GC, Popa VI (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249. https://doi.org/10.1016/j.reactfunctpolym.2006.03.006

    Article  CAS  Google Scholar 

  43. Silverstein RM, Webster FX, Kiemle DJ, Bryce DL (2014) Spectrometric identification of organic compounds. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgements

TN acknowledges a financial support from the Amada Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nakajima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikawa, H., Nakata, E., Nakano, S. et al. Influence of polymer molecular weight on the properties of in situ synthesized silver–methylcellulose nanocomposite films with a CO2 laser. J Mater Sci 55, 2090–2100 (2020). https://doi.org/10.1007/s10853-019-04149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04149-5

Navigation