Skip to main content
Log in

Overview on thermoactive materials, simulations and applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermoactive materials changed minds in smart materials research some years ago, resulting in a generation of new high-performance materials and an increased focus on controlling structure, flexibility and smart output, as well as implementation into device applications. Particularly, thermoelectric (TE) and thermomagnetic (TM) materials have been attracting increasing interest, being TEs capable of directly converting temperature variations into electricity and, analogously, TMs materials able to convert temperature variations into magnetic fields. Due to those smart properties, those materials are highly used in thermoactive generators and thermoactive sensor devices, among others. This work reports on the structure, properties and uses of thermoactive materials as well as the main materials optimized for the development of applications. Additionally, recent advances in the design and properties of thermoelectric materials, modelling approaches and some relevant applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Image adapted with permission from [17]

Figure 4

Image taken with permission from [18]

Figure 5

Image adapted with permission from [15]

Figure 6

Image taken with permission from [15]

Figure 7

Image taken with permission from [59]

Figure 8

Image taken with permission from [63]

Figure 9

Image taken with permission from [64]

Figure 10

Image taken with permission from, [64]

Figure 11
Figure 12

Image taken with permission from [86]

Figure 13

Image taken with permission from [110]

Similar content being viewed by others

References

  1. Rohrman FA (1937) The theory of the properties of metals and alloys (Mott, N. F.; Jones, H.). J Chem Educ 14:99–100. https://doi.org/10.1021/ed014p99

    Article  Google Scholar 

  2. Varlamov AA, Kavokin AV (2013) Prediction of thermomagnetic and thermoelectric properties for novel materials and systems. EPL (Europhys Lett) 103:47005. https://doi.org/10.1209/0295-5075/103/47005

    Article  CAS  Google Scholar 

  3. Seebeck TJ (1826) Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz. Ann Phys 82:253–286. https://doi.org/10.1002/andp.18260820302

    Article  Google Scholar 

  4. Apertet Y, Ouerdane H, Goupil C, Lecoeur P (2016) A note on the electrochemical nature of the thermoelectric power. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2016-16076-8

    Article  Google Scholar 

  5. Zhang X, Zhao L-D (2015) Thermoelectric materials: energy conversion between heat and electricity. J Materiomics 1:92–105. https://doi.org/10.1016/j.jmat.2015.01.001

    Article  Google Scholar 

  6. Abrikosov AA (2017) Fundamentals of the theory of metals. Dover Publications, New York

    Google Scholar 

  7. Metzger RM (2012) The physical chemist’s toolbox. Wiley, Hoboken

    Book  Google Scholar 

  8. Sapoval B, Hermann C (1988) Physics of semiconductors. Springer, New York

    Google Scholar 

  9. Goupil C, Seifert W, Zabrocki K, Müller E, Snyder GJ (2011) Thermodynamics of thermoelectric phenomena and applications. Entropy 13:1481–1517

    Article  Google Scholar 

  10. Kretzschmar KM, Wilkie DR (1975) Use of Peltier effect for simple and accurate calibration of thermoelectric devices. Proc R Soc Ser B Biol Sci 190:315–321. https://doi.org/10.1098/rspb.1975.0095

    Article  CAS  Google Scholar 

  11. Apertet Y, Goupil C (2016) On the fundamental aspect of the first Kelvin’s relation in thermoelectricity. Int J Therm Sci 104:225–227. https://doi.org/10.1016/j.ijthermalsci.2016.01.009

    Article  Google Scholar 

  12. Callen HB (1948) The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys Rev 73:1349–1358

    Article  CAS  Google Scholar 

  13. Yushanov LGS, Crompton J, Koppenhoefer K (2011) Multiphysics analysis of thermoelectric phenomena. In: COMSOL conference

  14. Goldsmid HJ (2016) Introduction to thermoelectricity. Springer, Berlin

    Book  Google Scholar 

  15. Rowe DM (2005) Thermoelectrics handbook: macro to nano. CRC Press, Boca Raton

    Google Scholar 

  16. Behnia K (2015) Fundamentals of thermoelectricity. OUP, Oxford

    Book  Google Scholar 

  17. Dong HC, Wen B, Melnik R (2014) Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci Rep. https://doi.org/10.1038/srep07037

    Article  Google Scholar 

  18. Zhou S, Sammakia BG, White B, Borgesen P, Chen C (2015) Multiscale modeling of thermoelectric generators for conversion performance enhancement. Int J Heat Mass Transf 81:639–645. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.068

    Article  Google Scholar 

  19. Mortazavi B, Rabczuk T (2017) Multiscale modelling of heat conduction in all-MoS2 single-layer heterostructures. RSC Adv 7:11135–11141. https://doi.org/10.1039/C6RA26958C

    Article  CAS  Google Scholar 

  20. Wu Y, Ming T, Li X, Pan T, Peng K, Luo X (2014) Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator. Energy Convers Manag 88:915–927. https://doi.org/10.1016/j.enconman.2014.08.069

    Article  Google Scholar 

  21. Buschow KHJ (2005) Concise encyclopedia of magnetic and superconducting materials. Elsevier Science, Amsterdam

    Google Scholar 

  22. Schröder K, Otooni M (1971) Effect of magnetic fields on the absolute Seebeck coefficient and the resistivity of thermocouple wires. J Phys D Appl Phys 4:1612–1616. https://doi.org/10.1088/0022-3727/4/10/321

    Article  Google Scholar 

  23. Murata M, Yamamoto A, Hasegawa Y, Komine T (2016) Magnetic-field dependence of thermoelectric properties of sintered Bi90Sb10 alloy. J Electron Mater 45:1875–1885. https://doi.org/10.1007/s11664-015-4270-y

    Article  CAS  Google Scholar 

  24. Homm G, Gather F, Kronenberger A et al (2012) Effects of interface geometry on the thermoelectric properties of laterally microstructured ZnO-based thin films. Phys Status Solidi (A) 210:119–124. https://doi.org/10.1002/pssa.201228463

    Article  CAS  Google Scholar 

  25. Wang M, Zhang B, Zhang GP, Yu QY, Liu C (2009) Effects of interface and grain boundary on the electrical resistivity of Cu/Ta multilayers. J Mater Sci Technol 25:699–702

    Article  CAS  Google Scholar 

  26. Sharp JW, Poon SJ, Goldsmid HJ (2001) Boundary scattering and the thermoelectric figure of merit. Phys Status Solidi (A) 187:507–516. https://doi.org/10.1002/1521-396X(200110)187:2%3c507:AID-PSSA507%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  27. Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731

    Article  CAS  Google Scholar 

  28. Vashaee D, Shakouri A (2004) Improved thermoelectric power factor in metal-based superlattices. Phys Rev Lett 92:106103

    Article  Google Scholar 

  29. Heremans JP, Thrush CM, Morelli DT (2004) Thermopower enhancement in lead telluride nanostructures. Phys Rev B 70:115334

    Article  Google Scholar 

  30. Heremans JP, Thrush CM, Morelli DT (2005) Thermopower enhancement in PbTe with Pb precipitates. J Appl Phys 98:063703. https://doi.org/10.1063/1.2037209

    Article  CAS  Google Scholar 

  31. Medlin DL, Snyder GJ (2009) Interfaces in bulk thermoelectric materials: a review for current opinion in colloid and interface science. Curr Opin Colloid Interface Sci 14:226–235. https://doi.org/10.1016/j.cocis.2009.05.001

    Article  CAS  Google Scholar 

  32. Ouyang Y, Zhang Z, Li D, Chen J, Zhang G (2019) Emerging theory, materials, and screening methods: new opportunities for promoting thermoelectric performance. Ann Phys. https://doi.org/10.1002/andp.201800437

    Article  Google Scholar 

  33. Xu N, Xu Y, Zhu J (2017) Topological insulators for thermoelectrics. npj Quantum Mater. https://doi.org/10.1038/s41535-017-0054-3

    Article  Google Scholar 

  34. Heremans JP, Jovovic V, Toberer ES et al (2008) Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321:554–557. https://doi.org/10.1126/science.1159725

    Article  CAS  Google Scholar 

  35. Polozine A, Sirotinskaya S, Schaeffer L (2014) History of development of thermoelectric materials for electric power generation and criteria of their quality. Mater Res 17:1260

    Article  Google Scholar 

  36. Tripathi MN, Bhandari CM (2003) High-temperature thermoelectric performance of Si–Ge alloys. J Phys: Condens Matter 15:5359–5370

    CAS  Google Scholar 

  37. Wang X, Yang R, Zhang Y, Zhang P, Xue Y (2011) Rare earth chalcogenide Ce3Te4 as high efficiency high temperature thermoelectric material. Appl Phys Lett 98:222110. https://doi.org/10.1063/1.3597409

    Article  CAS  Google Scholar 

  38. Keshavarz MK, Vasilevskiy D, Masut RA, Turenne S (2013) p-Type bismuth telluride-based composite thermoelectric materials produced by mechanical alloying and hot extrusion. J Electron Mater 42:1429–1435. https://doi.org/10.1007/s11664-012-2284-2

    Article  CAS  Google Scholar 

  39. Gürth M, Rogl G, Romaka VV, Grytsiv A, Bauer E, Rogl P (2016) Thermoelectric high ZT half-Heusler alloys Ti1−x−yZrxHfyNiSn (0 ≤ x ≤ 1; 0 ≤ y ≤ 1). Acta Mater 104:210–222. https://doi.org/10.1016/j.actamat.2015.11.022

    Article  CAS  Google Scholar 

  40. Cho H, Kim JH, Back SY, Ahn K, Rhyee J-S, Park S-D (2018) Enhancement of thermoelectric properties in CuI-doped Bi2Te2.7Se0.3 by hot-deformation. J Alloys Compd 731:531–536. https://doi.org/10.1016/j.jallcom.2017.10.016

    Article  CAS  Google Scholar 

  41. Wang HC, Wang CL, Su WB et al (2010) Enhancement of thermoelectric figure of merit by doping Dy in La0.1Sr0.9TiO3 ceramic. Mater Res Bull 45:809–812. https://doi.org/10.1016/j.materresbull.2010.03.018

    Article  CAS  Google Scholar 

  42. Lee P-Y, Chen T-C, Huang J-Y, Hsieh H-L, Jang JS-C (2014) Enhancement of the thermoelectric performance in nano-/micro-structured p-type Bi0.4Sb1.6Te3 fabricated by mechanical alloying and vacuum hot pressing. J Alloys Compd 615:S476–S481. https://doi.org/10.1016/j.jallcom.2013.12.068

    Article  CAS  Google Scholar 

  43. Du Z, Chen X, Zhu J, Cui J (2018) Effect of Ga alloying on thermoelectric properties of InSb. Curr Appl Phys 18:893–897. https://doi.org/10.1016/j.cap.2018.04.018

    Article  Google Scholar 

  44. Saurabh S, Simant Kumar S, Ashutosh P, Ratnamala C, Sudhir KP (2018) Effect of nanostructure on thermoelectric properties of La0.7Sr0.3MnO3 in 300–600 K temperature range. Mater Res Express 5:055026

    Article  Google Scholar 

  45. Kurosaki K, Yusufu A, Miyazaki Y, Ohishi Y, Muta H, Yamanaka S (2016) Enhanced thermoelectric properties of silicon via nanostructuring. Mater Trans 57:1018–1021. https://doi.org/10.2320/matertrans.MF201601

    Article  CAS  Google Scholar 

  46. Li C, Jiang F, Liu C et al (2017) A simple thermoelectric device based on inorganic/organic composite thin film for energy harvesting. Chem Eng J 320:201–210. https://doi.org/10.1016/j.cej.2017.03.023

    Article  CAS  Google Scholar 

  47. Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571. https://doi.org/10.1126/science.1194975

    Article  CAS  Google Scholar 

  48. Wang T, Liu C, Jiang F et al (2017) Solution-processed two-dimensional layered heterostructure thin-film with optimized thermoelectric performance. Phys Chem Chem Phys 19:17560–17567. https://doi.org/10.1039/c7cp02011b

    Article  CAS  Google Scholar 

  49. Zhang Q, Sun Y, Xu W, Zhu D (2014) Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26:6829–6851. https://doi.org/10.1002/adma.201305371

    Article  CAS  Google Scholar 

  50. Jiang FX, Xu JK, Lu BY, Xie Y, Huang RJ, Li LF (2008) Thermoelectric performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Chin Phys Lett 25:2202–2205. https://doi.org/10.1088/0256-307X/25/6/076

    Article  CAS  Google Scholar 

  51. Shi H, Liu C, Jiang Q, Xu J (2015) Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv Electron Mater. https://doi.org/10.1002/aelm.201500017

    Article  Google Scholar 

  52. Xiong J, Jiang F, Zhou W, Liu C, Xu J (2015) Highly electrical and thermoelectric properties of a PEDOT:PSS thin-film via direct dilution-filtration. RSC Adv 5:60708–60712. https://doi.org/10.1039/c5ra07820b

    Article  CAS  Google Scholar 

  53. Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723. https://doi.org/10.1038/nmat3635

    Article  CAS  Google Scholar 

  54. Li C, Jiang F, Liu C, Liu P, Xu J (2019) Present and future thermoelectric materials toward wearable energy harvesting. Appl Mater Today 15:543–557. https://doi.org/10.1016/j.apmt.2019.04.007

    Article  Google Scholar 

  55. Zhang L, Lin S, Hua T, Huang B, Liu S, Tao X (2018) Fiber-based thermoelectric generators: materials, device structures, fabrication, characterization, and applications. Adv Energy Mater. https://doi.org/10.1002/aenm.201700524

    Article  Google Scholar 

  56. Liu J, Jia Y, Jiang Q et al (2018) Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl Mater Interfaces 10:44033–44040. https://doi.org/10.1021/acsami.8b15332

    Article  CAS  Google Scholar 

  57. Rowe DM (2006) CRC handbook of thermoelectrics. CRC Press, Boca Raton

    Google Scholar 

  58. Li J-F, Liu W-S, Zhao L-D, Zhou M (2010) High-performance nanostructured thermoelectric materials. Npg Asia Mater 2:152–158. https://doi.org/10.1038/asiamat.2010.138

    Article  Google Scholar 

  59. Gayner C, Kar KK (2016) Recent advances in thermoelectric materials. Prog Mater Sci 83:330–382. https://doi.org/10.1016/j.pmatsci.2016.07.002

    Article  CAS  Google Scholar 

  60. Kittel C (2007) Introduction to solid state physics, 7th edn. Wiley India Pvt. Limited, Bengaluru

    Google Scholar 

  61. Dresselhaus MS, Chen G, Tang MY et al (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053. https://doi.org/10.1002/adma.200600527

    Article  CAS  Google Scholar 

  62. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114. https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  63. Gao Y, He Y, Zhu L (2010) Impact of grain size on the Seebeck coefficient of bulk polycrystalline thermoelectric materials. Chin Sci Bull 55:16–21. https://doi.org/10.1007/s11434-009-0705-2

    Article  Google Scholar 

  64. Kuo C-H, Chien H-S, Hwang C-S, Chou Y-W, Jeng M-S, Yoshimura M (2011) Thermoelectric properties of fine-grained PbTe bulk materials fabricated by cryomilling and spark plasma sintering. Mater Trans 52:795–801. https://doi.org/10.2320/matertrans.M2010331

    Article  CAS  Google Scholar 

  65. Wang SF, Yan GY, Chen SS et al (2013) Effect of microstructure on the thermoelectric properties of CSD-grown Bi2Sr2Co2Oy thin films. Chin Phys B 22:037302. https://doi.org/10.1088/1674-1056/22/3/037302

    Article  CAS  Google Scholar 

  66. Takashiri M, Miyazaki K, Tanaka S, Kurosaki J, Nagai D, Tsukamoto H (2008) Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films. J Appl Phys 104:084302. https://doi.org/10.1063/1.2990774

    Article  CAS  Google Scholar 

  67. Bentley RE (1998) Handbook of temperature measurement, vol 3: the theory and practice of thermoelectric thermometry. Springer, Singapore

    Google Scholar 

  68. Davis JR, ASMIH Committee (2001) Copper and copper alloys. ASM International, Philadelphia

    Google Scholar 

  69. Kasap S (2018) Thermoelectric effect in metals: thermocouples, e-booklet. http://educypedia.karadimov.info/library/Thermoelectric-Seebeck.pdf

  70. Lide DR (2003) CRC handbook of chemistry and physics, 84th edn. Taylor & Francis, London

    Google Scholar 

  71. TIBTECH, innovations (2011) Properties table of stainless steel, metals and other conductive materials. http://www.tibtech.com/conductivity.php. Accessed 25 Oct 2017

  72. Engineers, Edge (2017) Specific heat capacity of metals table chart. https://www.engineersedge.com/materials/specific_heat_capacity_of_metals_13259.htm

  73. Chung DDL (2001) Applied materials science: applications of engineering materials in structural, electronics, thermal, and other industries. CRC Press, Boca Raton

    Book  Google Scholar 

  74. Karandikar P (2006) International Patent No. WO2006080936. Retrieved from https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2006080936

  75. Darling AS (1962) Gold-platinum alloys: a critical review of their constitution and properties. Platin Met Rev 6:60–67

  76. Bridgman PW (1924) The connections between the four transverse galvanomagnetic and thermomagnetic phenomena. Phys Rev 24:644–651. https://doi.org/10.1103/PhysRev.24.644

    Article  Google Scholar 

  77. Behnia K, Aubin H (2016) Nernst effect in metals and superconductors: a review of concepts and experiments. Rep Prog Phys. https://doi.org/10.1088/003-4885/79/4/046502

    Article  Google Scholar 

  78. Champier D (2017) Thermoelectric generators: a review of applications. Energy Convers Manag 140:167–181. https://doi.org/10.1016/j.enconman.2017.02.070

    Article  Google Scholar 

  79. LI Shure, HJ Schwartz (1965) Survey of electric power plants for space applications. In: Fifty-eight national meeting of the American Institute of Chemical Engineers, Philadelphia, PA

  80. Rowe DM (1991) Applications of nuclear-powered thermoelectric generators in space. Appl Energy 40:241–271. https://doi.org/10.1016/0306-2619(91)90020-X

    Article  CAS  Google Scholar 

  81. Jager T, Leger JM, Bertrand F, Fratter I, Lalaurie JC, IEEE (2010) SWARM absolute scalar magnetometer accuracy: analyses and measurement results. IEEE Sens. https://doi.org/10.1109/icsens.2010.5690960

    Article  Google Scholar 

  82. Friis-Christensen E, Luhr H, Hulot G (2006) Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58:351–358. https://doi.org/10.1186/bf03351933

    Article  Google Scholar 

  83. Jager T, Léger JM, Fratter I, Lier P, Pacholczyk P (2016) Magnetic cleanliness and thermomagnetic effect: case study of the absolute scalar magnetometer and its environment on swarm satellites. In: 2016 ESA workshop on aerospace EMC (Aerospace EMC)

  84. Hulot G, Vigneron P, Leger JM et al (2015) Swarm’s absolute magnetometer experimental vector mode, an innovative capability for space magnetometry. Geophys Res Lett 42:1352–1359. https://doi.org/10.1002/2014gl062700

    Article  Google Scholar 

  85. Toffner-Clausen L, Lesur V, Olsen N, Finlay CC (2016) In-flight scalar calibration and characterisation of the swarm magnetometry package. Earth Planets Space. https://doi.org/10.1186/s40623-016-0501-6

    Article  Google Scholar 

  86. Vigneron P, Hulot G, Olsen N et al (2015) A 2015 international geomagnetic reference field (IGRF) candidate model based on Swarm’s experimental absolute magnetometer vector mode data. Earth Planets Space. https://doi.org/10.1186/s40623-015-0265-4

    Article  Google Scholar 

  87. Armano M (2015) The LISA pathfinder mission. J Phys: Conf Ser 610:012005

    Google Scholar 

  88. Antonucci F, Armano M, Audley H et al (2012) The LISA pathfinder mission. Class Quantum Gravity 29:124014

    Article  Google Scholar 

  89. Kim S, Song Y, Lee Y-I, Choa Y-H (2017) Thermochemical hydrogen sensor based on Pt-coated nanofiber catalyst deposited on pyramidally textured thermoelectric film. Appl Surf Sci 415:119–125. https://doi.org/10.1016/j.apsusc.2016.10.022

    Article  CAS  Google Scholar 

  90. Shin W, Matsumiya M, Qiu F, Izu N, Murayama N (2004) Thermoelectric gas sensor for detection of high hydrogen concentration. Sens Actuators B Chem 97:344–347. https://doi.org/10.1016/j.snb.2003.08.029

    Article  CAS  Google Scholar 

  91. Sawaguchi N, Shin W, Izu N, Matsubara I, Murayama N (2006) Enhanced hydrogen selectivity of thermoelectric gas sensor by modification of platinum catalyst surface. Mater Lett 60:313–316. https://doi.org/10.1016/j.matlet.2004.05.092

    Article  CAS  Google Scholar 

  92. Tajima K, Qiu F, Shin W, Izu N, Matsubara I, Murayama N (2005) Micromechanical fabrication of low-power thermoelectric hydrogen sensor. Sens Actuators B Chem 108:973–978. https://doi.org/10.1016/j.snb.2004.11.025

    Article  CAS  Google Scholar 

  93. Qiu F, Matsumiya M, Shin W, Izu N, Murayama N (2003) Investigation of thermoelectric hydrogen sensor based on SiGe film. Sens Actuators B Chem 94:152–160. https://doi.org/10.1016/S0925-4005(03)00365-4

    Article  CAS  Google Scholar 

  94. Qiu F, Shin W, Matsumiya M, Izu N, Matsubara I, Murayama N (2004) Miniaturization of thermoelectric hydrogen sensor prepared on glass substrate with low-temperature crystallized SiGe film. Sens Actuators B Chem 103:252–259. https://doi.org/10.1016/j.snb.2004.04.057

    Article  CAS  Google Scholar 

  95. Shin W, Tajima K, Choi Y, Izu N, Matsubara I, Murayama N (2005) Planar catalytic combustor film for thermoelectric hydrogen sensor. Sens Actuators B Chem 108:455–460. https://doi.org/10.1016/j.snb.2004.12.077

    Article  CAS  Google Scholar 

  96. Zhang J, Luan W, Huang H, Qi Y, Tu S-T (2007) Preparation and characteristics of Pt/ACC catalyst for thermoelectric thin film hydrogen sensor. Sens Actuators B Chem 128:266–272. https://doi.org/10.1016/j.snb.2007.06.018

    Article  CAS  Google Scholar 

  97. Matsumiya M, Shin W, Izu N, Murayama N (2003) Nano-structured thin-film Pt catalyst for thermoelectric hydrogen gas sensor. Sens Actuators B Chem 93:309–315. https://doi.org/10.1016/s0925-4005(03)00223-5

    Article  CAS  Google Scholar 

  98. Huang H, Luan WL, Zhang JS, Qi YS, Tu ST (2008) Thermoelectric hydrogen sensor working at room temperature prepared by bismuth-telluride P-N couples and Pt/gamma-Al2O3. Sens Actuators B Chem 128:581–585. https://doi.org/10.1016/j.snb.2007.07.060

    Article  CAS  Google Scholar 

  99. Nishibori M, Shin W, Izu N et al (2009) Robust hydrogen detection system with a thermoelectric hydrogen sensor for hydrogen station application. Int J Hydrogen Energy 34:2834–2841. https://doi.org/10.1016/j.ijhydene.2009.01.027

    Article  CAS  Google Scholar 

  100. Rettig F, Moos R (2010) α-Iron oxide: an intrinsically semiconducting oxide material for direct thermoelectric oxygen sensors. Sens Actuators B Chem 145:685–690. https://doi.org/10.1016/j.snb.2010.01.023

    Article  CAS  Google Scholar 

  101. Roder-Roith U, Rettig F, Roder T, Janek J, Moos R, Sahner K (2009) Thick-film solid electrolyte oxygen sensors using the direct ionic thermoelectric effect. Sens Actuators B Chem 136:530–535. https://doi.org/10.1016/j.snb.2008.12.024

    Article  CAS  Google Scholar 

  102. Shin W, Matsumiya M, Izu N, Murayama N (2003) Hydrogen-selective thermoelectric gas sensor. Sens Actuators B Chem 93:304–308. https://doi.org/10.1016/S0925-4005(03)00225-9

    Article  CAS  Google Scholar 

  103. Sawaguchi N, Shin W, Izu N, Matsubara I, Murayama N (2005) Effect of humidity on the sensing property of thermoelectric hydrogen sensor. Sens Actuators B Chem 108:461–466. https://doi.org/10.1016/j.snb.2004.12.078

    Article  CAS  Google Scholar 

  104. Goto T, Itoh T, Akamatsu T, Izu N, Shin W (2016) CO sensing properties of Au/SnO2–Co3O4 catalysts on a micro thermoelectric gas sensor. Sens Actuators B Chem 223:774–783. https://doi.org/10.1016/j.snb.2015.09.146

    Article  CAS  Google Scholar 

  105. Kasyutich VL, Martin PA (2011) A CO2 sensor based upon a continuous-wave thermoelectrically-cooled quantum cascade laser. Sens Actuators B Chem 157:635–640. https://doi.org/10.1016/j.snb.2011.05.038

    Article  CAS  Google Scholar 

  106. Rettig F, Moos R (2007) Direct thermoelectric gas sensors: design aspects and first gas sensors. Sens Actuators B Chem 123:413–419. https://doi.org/10.1016/j.snb.2006.09.002

    Article  CAS  Google Scholar 

  107. Rettig F, Moos R (2009) Temperature-modulated direct thermoelectric gas sensors: thermal modeling and results for fast hydrocarbon sensors. Meas Sci Technol. https://doi.org/10.1088/0957-0233/20/6/065205

    Article  Google Scholar 

  108. Shin W, Nishibori M, Houlet LF, Itoh T, Izu N, Matsubara I (2009) Fabrication of thermoelectric gas sensors on micro-hotplates. Sens Actuators B Chem 139:340–345. https://doi.org/10.1016/j.snb.2009.03.032

    Article  CAS  Google Scholar 

  109. Xu T, Huang H, Luan W, Qi Y, Tu S-T (2008) Thermoelectric carbon monoxide sensor using Co-Ce catalyst. Sens Actuators B Chem 133:70–77. https://doi.org/10.1016/j.snb.2008.01.064

    Article  CAS  Google Scholar 

  110. Hust JG, Weitzel DH, Powell RL (1971) Thermal conductivity, electrical resistivity, and thermopower of aerospace alloys from 4 to 300 K. J Res Natl Bureau Std Sect A Phys Chem A 75:269–277. https://doi.org/10.6028/jres.075A.025

    Article  CAS  Google Scholar 

  111. Wiegartner S, Hagen G, Kita J et al (2015) Thermoelectric hydrocarbon sensor in thick-film technology for on-board-diagnostics of a diesel oxidation catalyst. Sens Actuators B Chem 214:234–240. https://doi.org/10.1016/j.snb.2015.02.083

    Article  CAS  Google Scholar 

  112. Iezzi B, Ankireddy K, Twiddy J, Losego MD, Jur JS (2017) Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors. Appl Energy 208:758–765. https://doi.org/10.1016/j.apenergy.2017.09.073

    Article  Google Scholar 

  113. We JH, Kim SJ, Cho BJ (2014) Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator. Energy 73:506–512. https://doi.org/10.1016/j.energy.2014.06.047

    Article  CAS  Google Scholar 

  114. Seo B, Hwang H, Kang S, Cha Y, Choi W (2018) Flexible-detachable dual-output sensors of fluid temperature and dynamics based on structural design of thermoelectric materials. Nano Energy 50:733–743. https://doi.org/10.1016/j.nanoen.2018.06.027

    Article  CAS  Google Scholar 

  115. Qing SW, Rezania A, Rosendahl LA, Enkeshafi AA, Gou XL (2018) Characteristics and parametric analysis of a novel flexible ink-based thermoelectric generator for human body sensor. Energy Convers Manag 156:655–665. https://doi.org/10.1016/j.enconman.2017.11.065

    Article  CAS  Google Scholar 

  116. Qing SW, Rezania A, Rosendahl LA, Gou XL (2018) Design of flexible thermoelectric generator as human body sensor. Mater Today Proc 5:10338–10346. https://doi.org/10.1016/j.matpr.2017.12.282

    Article  CAS  Google Scholar 

  117. Cheng H, Du YR, Wang BJ et al (2018) Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chem Eng J 338:1–7. https://doi.org/10.1016/j.cej.2017.12.134

    Article  CAS  Google Scholar 

  118. Francioso L, De Pascali C, Farella I et al (2011) Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. J Power Sources 196:3239–3243. https://doi.org/10.1016/j.jpowsour.2010.11.081

    Article  CAS  Google Scholar 

  119. Zhu W, Deng Y, Cao LL (2017) Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device. Nano Energy 34:463–471. https://doi.org/10.1016/j.nanoen.2017.03.020

    Article  CAS  Google Scholar 

  120. Kim YJ, Gu HM, Kim CS et al (2018) High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator. Energy 162:526–533. https://doi.org/10.1016/j.energy.2018.08.064

    Article  CAS  Google Scholar 

  121. Hannan MA, Mutashar S, Samad SA, Hussain A (2014) Energy harvesting for the implantable biomedical devices: issues and challenges. Biomed Eng Online. https://doi.org/10.1186/1475-925x-13-79

    Article  Google Scholar 

  122. Lay-Ekuakille A, Vendramin G, Trotta A, Mazzotta G (2009) Thermoelectric generator design based on power from body heat for biomedical autonomous devices. In: 2009 IEEE international workshop on medical measurements and applications

  123. Leonov Vladimir, Tom TorfsRuud JM, Vullers CV Hoof (2010) Hybrid thermoelectric-photovoltaic generators in wireless electroencephalography diadem and electrocardiography shirt. J Electron Mater 39:1674–1680. https://doi.org/10.1007/s11664-010-1230-4

    Article  CAS  Google Scholar 

  124. Nishibori M, Shin W, Izu N, Itoh T, Matsubara I (2009) Sensing performance of thermoelectric hydrogen sensor for breath hydrogen analysis. Sens Actuators B Chem 137:524–528. https://doi.org/10.1016/j.snb.2009.01.029

    Article  CAS  Google Scholar 

  125. Goto T, Itoh T, Akamatsu T, Sasaki Y, Sato K, Shin W (2017) Heat transfer control of micro-thermoelectric gas sensor for breath gas monitoring. Sens Actuators B Chem 249:571–580. https://doi.org/10.1016/j.snb.2017.03.113

    Article  CAS  Google Scholar 

  126. Kim CS, Yang HM, Lee J et al (2018) Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett 3:501–507. https://doi.org/10.1021/acsenergylett.7b01237

    Article  CAS  Google Scholar 

  127. Bhatia D, Bairagi S, Goel S, Jangra M (2010) Pacemakers charging using body energy. J Pharm Bioallied Sci 2:51–54. https://doi.org/10.4103/0975-7406.62713

    Article  Google Scholar 

  128. Jadhav OS, Yuan CD, Hohlfeld D, Bechtold T (2017) Design of a thermoelectric generator for electrical active implants. In: MikroSystemTechnik 2017; congress

  129. Chen A, Wright PK (2012) Medical applications of thermoelectrics. In: Modules, systems, and applications in thermoelectrics. CRC Press

  130. Torfs T, Leonov V, Yazicioglu RF et al (2008) Wearable autonomous wireless electro-encephalography system fully powered by human body heat. In: IEEE Sensors 2008 conference, pp. 1269–1272

  131. Kraemer D, Poudel B, Feng H-P et al (2011) High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater 10:532. https://doi.org/10.1038/nmat3013

    Article  CAS  Google Scholar 

  132. Kraemer D, McEnaney K, Chiesa M, Chen G (2012) Modeling and optimization of solar thermoelectric generators for terrestrial applications. Sol Energy 86:1338–1350. https://doi.org/10.1016/j.solener.2012.01.025

    Article  CAS  Google Scholar 

  133. Baranowski LL, Snyder GJ, Toberer ES (2012) Concentrated solar thermoelectric generators. Energy Environ Sci 5:9055–9067. https://doi.org/10.1039/c2ee22248e

    Article  CAS  Google Scholar 

  134. Lee JJ, Yoo D, Park C, Choi HH, Kim JH (2016) All organic-based solar cell and thermoelectric generator hybrid device system using highly conductive PEDOT:PSS film as organic thermoelectric generator. Sol Energy 134:479–483. https://doi.org/10.1016/j.solener.2016.05.006

    Article  CAS  Google Scholar 

  135. Da Y, Xuan Y, Li Q (2016) From light trapping to solar energy utilization: a novel photovoltaic-thermoelectric hybrid system to fully utilize solar spectrum. Energy 95:200–210. https://doi.org/10.1016/j.energy.2015.12.024

    Article  Google Scholar 

  136. Hsiao YY, Chang WC, Chen SL (2010) A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy 35:1447–1454. https://doi.org/10.1016/j.energy.2009.11.030

    Article  CAS  Google Scholar 

  137. Champier D, Bedecarrats JP, Rivaletto M, Strub F (2010) Thermoelectric power generation from biomass cook stoves. Energy 35:935–942. https://doi.org/10.1016/j.energy.2009.07.015

    Article  Google Scholar 

  138. Keyur BJ, Shashank P (2013) Multi-physics model of a thermo-magnetic energy harvester. Smart Mater Struct 22:055005

    Article  Google Scholar 

  139. Brignone M, Ziggiotti A (2012) Impact of novel thermoelectric materials on automotive applications. AIP Conf Proc 1449:493–496. https://doi.org/10.1063/1.4731601

    Article  CAS  Google Scholar 

  140. Magnetto D, Vidiella G (2012) Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks. AIP Conf Proc 1449:471–474. https://doi.org/10.1063/1.4731598

    Article  CAS  Google Scholar 

  141. Frobenius F, Gaiser G, Rusche U, Weller B (2016) Thermoelectric generators for the integration into automotive exhaust systems for passenger cars and commercial vehicles. J Electron Mater 45:1433–1440. https://doi.org/10.1007/s11664-015-4059-z

    Article  CAS  Google Scholar 

  142. Najjar YSH, Kseibi MM (2017) Thermoelectric stoves for poor deprived regions—a review. Renew Sustain Energy Rev 80:597–602. https://doi.org/10.1016/j.rser.2017.05.211

    Article  Google Scholar 

  143. Nuwayhid RY, Rowe DM, Min G (2003) Low cost stove-top thermoelectric generator for regions with unreliable electricity supply. Renew Energy 28:205–222. https://doi.org/10.1016/S0960-1481(02)00024-1

    Article  Google Scholar 

  144. Rinalde GF, Juanicó LE, Taglialavore E, Gortari S, Molina MG (2010) Development of thermoelectric generators for electrification of isolated rural homes. Int J Hydrogen Energy 35:5818–5822. https://doi.org/10.1016/j.ijhydene.2010.02.093

    Article  CAS  Google Scholar 

  145. O’Shaughnessy SM, Deasy MJ, Doyle JV, Robinson AJ (2014) Field trial testing of an electricity-producing portable biomass cooking stove in rural Malawi. Energy Sustain Dev 20:1–10. https://doi.org/10.1016/j.esd.2014.01.009

    Article  CAS  Google Scholar 

  146. Nelson J (2003) The physics of solar cells. Imperial College Press, London

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of ESA—European Space Agency—under the contract No. 4000121851/17/NL/LvH/md, for the development of the work here reported. A special acknowledgement to Axel Junge, from ESA, in recognition of the technical support provided during the execution of the project. The authors also thank the FCT—Fundação para a Ciência e Tecnologia—for financial support under framework of the Strategic Funding UID/FIS/04650/2019 and grant SFRH/BD/145345/2019 (LF). The authors also acknowledge funding from the Basque Government Industry and Education Department under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06) programs, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Martins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, L., Fernández, E., Martins, P. et al. Overview on thermoactive materials, simulations and applications. J Mater Sci 55, 925–946 (2020). https://doi.org/10.1007/s10853-019-04113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04113-3

Navigation