Skip to main content

Advertisement

Log in

Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Conductive hydrogel has shown significant promise in the field of wearable devices. However, the mediocre antifreezing property and relatively low strain sensitivity limit the application of these gels. Herein, we developed a multifunctional hydrogel sensor based on a polyvinyl alcohol substrate with poly(3,4-ethylenedioxythiophene) as the conductive filler and a glycerin/water component solvent as the dispersion medium. The resulting optimal sample exhibits attractive combination of high tensile stress (~ 1.0 MPa), large elongation (> 400%), reasonable conductivity (~ 3.5 S m−1), while the glycerin/water solvent enable the hydrogel with a great antifreezing and moisturizing property. Accordingly, it was envisioned that the valid design method for conductive hydrogels with antifreeze, toughness, and moisturizing properties would provide wide utilizations of flexible wearable strain sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Cai G, Wang J, Qian K, Chen J, Li S, Lee PS (2017) Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv Sci 4(2):1600190

    Google Scholar 

  2. Deng Z, Hu T, Lei Q, He J, Ma PX, Guo B (2019) Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing. ACS Appl Mater Interfaces 11(7):6796–6808

    CAS  Google Scholar 

  3. Oh JH, Hong SY, Park H, Jin SW, Jeong YR, Oh SY, Yun J, Lee H, Kim JW, Ha JS (2018) Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive. ACS Appl Mater Interfaces 10(8):7263–7270

    CAS  Google Scholar 

  4. Feng S, Li Q, Wang S, Wang B, Hou Y, Zhang T (2019) Tunable dual temperature-pressure sensing and parameters self-separating based on ionic hydrogel via multi-synergistic network design. ACS Appl Mater Interfaces 11(23):21049–21057

    CAS  Google Scholar 

  5. Samai S, Sapsanis C, Patil SP, Ezzeddine A, Moosa BA, Omran H, Emwas A-H, Salama KN, Khashab NM (2016) A light responsive two-component supramolecular hydrogel: a sensitive platform for the fabrication of humidity sensors. Soft Matter 12(11):2842–2845

    CAS  Google Scholar 

  6. Shaibani PM, Etayash H, Naicker S, Kaur K, Thundat T (2017) Metabolic study of cancer cells using a pH sensitive hydrogel nanofiber light addressable potentiometric sensor. ACS Sens 2(1):151–156

    CAS  Google Scholar 

  7. Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28(22):4203–4218

    CAS  Google Scholar 

  8. Rim YS, Bae SH, Chen H, De Marco N, Yang YJAM (2016) Recent progress in materials and devices toward printable and flexible sensors. Adv Mater 28(22):4415–4440

    CAS  Google Scholar 

  9. Kim C-C, Lee H-H, Oh KH, Sun J-Y (2016) Highly stretchable, transparent ionic touch panel. Science 353(6300):682–687

    CAS  Google Scholar 

  10. Ding Y, Zhang J, Chang L, Zhang X, Liu H, Jiang L (2017) Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv Mater 29(47):1704253

    Google Scholar 

  11. Ding Y, Yang J, Tolle CR, Zhu Z (2018) Flexible and compressible PEDOT: pSS@ Melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl Mater Interfaces 10(18):16077–16086

    CAS  Google Scholar 

  12. An R, Zhang B, Han L, Wang X, Zhang Y, Shi L, Ran R (2019) Strain-sensitivity conductive MWCNTs composite hydrogel for wearable device and near-infrared photosensor. J Mater Sci 54(11):8515–8530. https://doi.org/10.1007/s10853-019-03438-3

    Article  CAS  Google Scholar 

  13. Xia S, Song S, Jia F, Gao G (2019) Flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J Mater Chem B 7:4638–4648

    CAS  Google Scholar 

  14. Zhang Y, An R, Han L, Wang X, Shi L, Ran R (2018) Novel self-healing, shape-memory, tunable double-layer actuators based on semi-IPN and physical double-network hydrogels. Macromol Mater Eng 303(12):1800505

    Google Scholar 

  15. Han L, He Y, An R, Wang X, Zhang Y, Shi L, Ran R (2019) Mussel-inspired, robust and self-healing nanocomposite hydrogels: effective reusable absorbents for removal both anionic and cationic dyes. Colloids Surf A Physicochem Eng Asp 569:18–27

    CAS  Google Scholar 

  16. Han L, Yan L, Wang M, Wang K, Fang L, Zhou J, Fang J, Ren F, Lu X (2018) Transparent, adhesive, and conductive hydrogel for soft bioelectronics based on light-transmitting polydopamine-doped polypyrrole nanofibrils. Chem Mater 30(16):5561–5572

    CAS  Google Scholar 

  17. Yang J, Wang X, Li B, Ma L, Shi L, Xiong Y, Xu H (2017) Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv Funct Mater 27(17):1606497

    Google Scholar 

  18. Chen F, Chen Q, Song Q, Lu H, Ma M (2019) Strong and stretchable polypyrrole hydrogels with biphase microstructure as electrodes for substrate-free stretchable supercapacitors. Adv Mater Interfaces 6(11):1900133

    Google Scholar 

  19. Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, Molina-Lopez F, Lissel F, Liu J, Rabiah NI (2017) A highly stretchable, transparent, and conductive polymer. Science 3(3):e1602076

    Google Scholar 

  20. Spencer AR, Primbetova A, Koppes AN, Koppes RA, Fenniri H, Annabi N (2018) Electroconductive gelatin methacryloyl-PEDOT: PSS composite hydrogels: design, synthesis, and properties. ACS Biomater Sci Eng 4(5):1558–1567

    CAS  Google Scholar 

  21. Yao B, Wang H, Zhou Q, Wu M, Zhang M, Li C, Shi G (2017) Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv Mater 29(28):1700974

    Google Scholar 

  22. Hao G-P, Hippauf F, Oschatz M, Wisser FM, Leifert A, Nickel W, Mohamed-Noriega N, Zheng Z, Kaskel S (2014) Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. ACS Nano 8(7):7138–7146

    CAS  Google Scholar 

  23. Zhong R, Tang Q, Wang S, Zhang H, Zhang F, Xiao M, Man T, Qu X, Li L, Zhang W (2018) Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Adv Mater 30(12):1706887

    Google Scholar 

  24. Li W, Gao F, Wang X, Zhang N, Ma M (2016) Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew Chem Int Ed 55(32):9196–9201

    CAS  Google Scholar 

  25. Huang W-C, Lo Y-C, Chu C-Y, Lai H-Y, Chen Y-Y, Chen S-Y (2017) Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation. Biomaterials 122:141–153

    CAS  Google Scholar 

  26. Sandu G, Ernould B, Rolland J, Cheminet N, Jrm Brassinne, Das PR, Filinchuk Y, Cheng L, Komsiyska L, Dubois P (2017) Mechanochemical synthesis of PEDOT: PSS hydrogels for aqueous formulation of Li-ion battery electrodes. ACS Appl Mater Interfaces 9(40):34865–34874

    CAS  Google Scholar 

  27. Feig VR, Tran H, Lee M, Liu K, Huang Z, Beker L, Mackanic DG, Bao Z (2019) An electrochemical gelation method for patterning conductive PEDOT: PSS hydrogels. Adv Mater 31:1902869

    Google Scholar 

  28. Cao S, Tong X, Dai K, Xu Q (2019) A super-stretchable and tough functionalized boron nitride/PEDOT: PSS/poly(N-isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. J Mater Chem A 7(14):8204–8209

    CAS  Google Scholar 

  29. Lu B, Yuk H, Lin S, Jian N, Qu K, Xu J, Zhao XJ (2019) Pure PEDOT: PSS hydrogels. Nat Commun 10(1):1043

    Google Scholar 

  30. Pu X, Guo H, Chen J, Wang X, Xi Y, Hu C, Wang ZL (2017) Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci Adv 3(7):e1700694

    Google Scholar 

  31. Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R (2016) Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351(6277):1071–1074

    CAS  Google Scholar 

  32. Rong Q, Lei W, Chen L, Yin Y, Zhou J, Liu M (2017) Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew Chem Int Ed 56(45):14159–14163

    CAS  Google Scholar 

  33. Rong Q, Lei W, Huang J, Liu M (2018) Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv Energy Mater 8(31):1801967

    Google Scholar 

  34. Han L, Liu K, Wang M, Wang K, Fang L, Chen H, Zhou J, Lu X (2018) Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Func Mater 28(3):1704195

    Google Scholar 

  35. Shi S, Peng X, Liu T, Chen Y-N, He C, Wang H (2017) Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol–glycerol gels with excellent thermoplasticity and mechanical properties. Polymer 111:168–176

    CAS  Google Scholar 

  36. Kratochvílová I, Golan M, Pomeisl K, Richter J, Sedláková S, Šebera J, Mičová J, Falk M, Falková I, Řeha D (2017) Theoretical and experimental study of the antifreeze protein AFP752, trehalose and dimethyl sulfoxide cryoprotection mechanism: correlation with cryopreserved cell viability. RSC Adv 7(1):352–360

    Google Scholar 

  37. Kim N, Kee S, Lee SH, Lee BH, Kahng YH, Jo YR, Kim BJ, Lee K (2014) Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization. Adv Mater 26(14):2268–2272

    CAS  Google Scholar 

  38. Lee YY, Kang HY, Gwon SH, Choi GM, Lim SM, Sun JY, Joo YC (2016) A strain-insensitive stretchable electronic conductor: PEDOT: PSS/acrylamide organogels. Adv Mater 28(8):1636–1643

    CAS  Google Scholar 

  39. Vosgueritchian M, Lipomi DJ, Bao Z (2012) Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater 22(2):421–428

    CAS  Google Scholar 

  40. Zhou H, Yao W, Li G, Wang J, Lu Y (2013) Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity. Carbon 59:495–502

    CAS  Google Scholar 

  41. Green RA, Hassarati RT, Goding JA, Baek S, Lovell NH, Martens PJ, Poole-Warren LA (2012) Conductive hydrogels: mechanically robust hybrids for use as biomaterials. Macromol Biosci 12(4):494–501

    CAS  Google Scholar 

  42. Hu C, Zhang Y, Wang X, Xing L, Shi L, Ran R (2018) Stable, strain-sensitive conductive hydrogel with antifreezing capability, remoldability, and reusability. ACS Appl Mater Interfaces 10(50):44000–44010

    CAS  Google Scholar 

  43. Xu C, Guan S, Wang S, Gong W, Liu T, Ma X, Sun C (2018) Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Mater Sci Eng C 84:32–43

    CAS  Google Scholar 

  44. Wang Q, Pan X, Lin C, Lin D, Ni Y, Chen L, Huang L, Cao S, Ma X (2019) Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT: sulfonated lignin as conductive materials. Chem Eng J 370:1039–1047

    CAS  Google Scholar 

  45. Elliott GD, Wang S, Fuller BJ (2017) Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76:74–91

    CAS  Google Scholar 

  46. Bai Y, Chen B, Xiang F, Zhou J, Wang H, Suo Z (2014) Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl Phys Lett 105(15):151903

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 51773124, 51403132), Sichuan Science and Technology Program China (Grant Nos. 2016GZ0300, 2018GZ0322), Innovation Team Program of Science and Technology Department of Sichuan Province (Grant No. 2014TD0002), Cooperation strategic projects of Luzhou governments and Sichuan University (Grant No. 2015CDLZ-G13), The Fundamental Research Funds for the Central Universities (Grant No. 2012017yjsy184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Ran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Yan, B., Li, Y. et al. Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor. J Mater Sci 55, 1280–1291 (2020). https://doi.org/10.1007/s10853-019-04101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04101-7

Navigation