Skip to main content

Advertisement

Log in

Construction of ternary CdxMo1−xSe quantum dots for enhanced photocatalytic hydrogen production

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of novel photocatalyst is an important issue for improving the photocatalytic hydrogen production efficiency. Herein, novel aqueous ternary CdxMo1−xSe quantum dots (QDs) are prepared with five ratios (x = 0, 0.5, 0.67, 0.75, 1) by modulating the metal content. Experimental results show that the doping of Mo promotes the photoinduced electrons transfer and decreases the photoinduced electron–hole pairs recombination. Compared with the CdSe QDs, Cd0.75Mo0.25Se QDs, Cd0.5Mo0.5Se QDs and MoSe2 QDs, Cd0.67Mo0.33Se QDs exhibit significantly enhanced photocatalytic activity, and the amount of H2 production comes up to 911.1 μmol in 7 h. Meanwhile, the Cd0.67Mo0.33Se QDs display substantially high stability in recycling test, which facilitates the utilization of ternary QDs in the photocatalytic hydrogen production application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hamanaka Y, Ozawa K, Kuzuya T (2014) Enhancement of donor-acceptor pair emissions in colloidal AgInS2 quantum dots with high concentrations of defects. J Phys Chem C 118:14562–14568

    CAS  Google Scholar 

  2. Feng J, Yang XR (2012) Tunable fluorescence emission of ternary nonstoichiometric Ag–In–S alloyed nanocrystals. J Nanopart Res 14:1044–1051

    Google Scholar 

  3. Panda SK, Hickey SG, Waurisch C, Eychmüller A (2011) Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications. J Mater Chem 21:11550–11555

    CAS  Google Scholar 

  4. Zang HD, Li HB, Makarov NS, Velizhanin KA, Wu KF, Park YS, Klimov VI (2017) Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-particle emission line widths. Nano Lett 17:1787–1795

    CAS  Google Scholar 

  5. Kim S, Kang M, Kim S, Heo JH, Noh JH, Im SH, Seok SII, Kim SW (2013) Fabrication of CuInTe2 and CuInTe2−xSex ternary gradient quantum dots and their application to solar cells. ACS Nano 7:4756–4763

    CAS  Google Scholar 

  6. Jara DH, Stamplecoskie KG, Kamat PV (2016) Two distinct transitions in CuxInS2 quantum dots. Bandgap versus sub-bandgap excitations in copper-deficient structures. J Phys Chem Lett 7:1452–1459

    CAS  Google Scholar 

  7. Zhao J, Holmes MA, Osterloh FE (2013) Quantum confinement controls photocatalysis: a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS Nano 7:4316–4325

    CAS  Google Scholar 

  8. Kazuhiko M, Thomas EM (2019) Two-dimensional metal oxide nanosheets as building blocks for artificial photosynthetic assemblies. Bull Chem Soc Jpn 92:38–54

    Google Scholar 

  9. Rao CNR, Pramoda K (2019) Borocarbonitrides, BxCyNz, 2D nanocomposites with novel properties. Bull Chem Soc Jpn 92:441–468

    CAS  Google Scholar 

  10. Pang JB, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu ZF, Rummeli MH (2019) Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 48:72–133

    CAS  Google Scholar 

  11. Martindale BCM, Hutton GAM, Caputo CA, Reisner E (2015) Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J Am Chem Soc 137:6018–6025

    CAS  Google Scholar 

  12. Lu Q, Zhang YJ, Liu SQ (2015) Graphene quantum dots enhanced photocatalytic activity of zinc porphyrin toward the degradation of methylene blue under visible-light irradiation. J Mater Chem A 3:8552–8558

    CAS  Google Scholar 

  13. Wang WJ, Yu JC, Shen ZR, Chan DKL, Gu T (2014) G-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chem Commun 50:10148–10150

    CAS  Google Scholar 

  14. Li GS, Lian ZC, Wang WC, Zhang DQ, Li HX (2016) Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis. Nano Energy 19:446–454

    CAS  Google Scholar 

  15. Li XB, Gao YJ, Wu HL, Wang Y, Guo Q, Huang MY, Chen B, Tung CH, Wu LZ (2017) Assembling metallic 1T-MoS2 nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chem Commun 53:5606–5609

    CAS  Google Scholar 

  16. Pan DY, Jiao JK, Li Z, Guo YT, Feng CQ, Liu Y, Wang L, Wu MH (2015) Efficient separation of electron–hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain Chem Eng 3:2405–2413

    CAS  Google Scholar 

  17. Fan XB, Yu S, Wang X, Li ZJ, Zhan F, Li JX, Gao YJ, Xia AD, Tao Y, Li XB, Zhang LP, Tung CH, Wu LZ (2019) Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration. Adv Mater 31:1804872–1804878

    Google Scholar 

  18. Burke R, Cogan NMB, Oi A, Krauss TD (2018) Recovery of active and efficient photocatalytic H2 production for CdSe quantum dots. J Phys Chem C 122:14099–14106

    CAS  Google Scholar 

  19. Lin X, Li SH, Lu KQ, Tang ZR, Xu YJ (2018) Constructing film composites of silicon nanowires@CdS quantum dot arrays with ameliorated photocatalytic performance. New J Chem 42:14096–14103

    CAS  Google Scholar 

  20. Zhong YQ, Chen WW, Yu S, Xie ZH, Wei SQ, Zhou Y (2018) CdSe quantum dots/g-C3N4 heterostructure for efficient H2 production under visible light irradiation. ACS Omega 3:17762–17769

    CAS  Google Scholar 

  21. Zhong YY, Chang B, Shao YL, Wu YZ, Hao XP (2018) A photo-responsive electrocatalyst: CdSe quantum dot sensitized WS2 nanosheets for hydrogen evolution in neutral solution. New J Chem 42:18021–18027

    CAS  Google Scholar 

  22. Dong YM, Wu RX, Jiang PP, Wang GL, Chen YM, Wu XM, Zhang C (2015) Efficient photoelectrochemical hydrogen generation from water using a robust photocathode formed by CdTe QDs and nickel ion. ACS Sustain Chem Eng 3:2429–2434

    CAS  Google Scholar 

  23. Han JS, Liu Y, Dai FX, Zhao RY, Wang L (2018) Fabrication of CdSe/CaTiO3 nanocomposties in aqueous solution for improved photocatalytic hydrogen production. Appl Surf Sci 459:520–526

    CAS  Google Scholar 

  24. Zhu YX, Wang YF, Chen Z, Qin LS, Yang LB, Zhu L, Tang P, Gao T, Huang YX, Sha ZL, Tang G (2015) Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays. Appl Catal A Gen 498:159–166

    CAS  Google Scholar 

  25. Zheng DD, Zhang GG, Wang XC (2015) Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis. Appl Catal B Environ 179:479–488

    CAS  Google Scholar 

  26. Han JS, Dai FX, Liu Y, Zhao RY, Wang L, Feng SH (2019) Synthesis of CdSe/SrTiO3 nanocomposites with enhanced photocatalytic hydrogen production activity. Appl Surf Sci 467–468:1033–1039

    Google Scholar 

  27. Pan J, Li JT, Yan ZL, Zhou BH, Wu HS, Xiong X (2013) SnO2@CdS nanowire-quantum dots heterostructures: tailoring optical properties of SnO2 for enhanced photodetection and photocatalysis. Nanoscale 5:3022–3029

    CAS  Google Scholar 

  28. Hou JG, Yang C, Cheng HJ, Wang Z, Jiao SQ, Zhu HM (2013) Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Phys Chem Chem Phys 15:15660–15668

    CAS  Google Scholar 

  29. Zhong WW, Tu WG, Feng SS, Xu AJ (2019) Photocatalytic H2 evolution on CdS nanoparticles by loading FeSe nanorods as co-catalyst under visible light irradiation. J Alloys Compd 772:669–674

    CAS  Google Scholar 

  30. Ouyang JY, Vincent M, Kingston D, Descours P, Boivineau T, Zaman MB, Wu XH, Yu K (2009) Noninjection, one-pot synthesis of photoluminescent colloidal homogeneously alloyed CdSeS quantum dots. J Phys Chem C 113:5193–5200

    CAS  Google Scholar 

  31. Freitas Neto ES, da Silva SW, Morais PC, Vasilevskiy MI, Pereira-da-Silva MA, Dantas NO (2011) Resonant Raman scattering in CdSxSe1−x nanocrystals: effects of phonon confinement, composition, and elastic strain. J Raman Spectrosc 42:1660–1669

    CAS  Google Scholar 

  32. Cho JS, Jung YK, Lee JK (2012) Kinetic studies on the formation of various II–VI semiconductor nanocrystals and synthesis of gradient alloy quantum dots emitting in the entire visible range. J Mater Chem 22:10827–10833

    CAS  Google Scholar 

  33. Pan AL, Liu RB, Sun MH, Ning CZ (2010) Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 4:671–680

    CAS  Google Scholar 

  34. Han ZZ, Ren LL, Luo M, Chen L, Pan HB, Li CY, Chen JH, Lan JM (2016) In situ synthesis and visible-light photocatalytic application of CdTeSe@TiO2 nanotube composites with high electron transfer rate. J Mol Catal A Chem 425:229–236

    CAS  Google Scholar 

  35. Smith DK, Luther JM, Semonin OE, Nozik AJ, Beard MC (2011) Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity. ACS Nano 5:183–190

    CAS  Google Scholar 

  36. Zhong XH, Han MY, Dong ZL, White TJ, Knoll W (2003) Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability. J Am Chem Soc 125:8589–8594

    CAS  Google Scholar 

  37. Protire M, Reiss P (2007) Highly luminescent Cd1−xZnxSe/ZnS core/shell nanocrystals emitting in the blue–green spectral range. Small 3:399–403

    Google Scholar 

  38. Husain M, Singh BP, Kumar S, Sharma TP, Sebastian PJ (2003) Optical, electrical and structural investigations on Cd1−xZnxSe sintered films for photovoltaic applications. Sol Energy Mater Sol C 76:399–415

    CAS  Google Scholar 

  39. Mansur AAP, Mansur HS, Caires AJ, Mansur RL, Oliveira LC (2017) Composition-tunable optical properties of ZnxCd(1−x)S quantum dot-carboxymethylcellulose conjugates: towards one-pot green synthesis of multifunctional nanoplatforms for biomedical and environmental applications. Nanoscale Res Lett 12:443–460

    Google Scholar 

  40. Xing CJ, Zhang YJ, Yan W, Guo LJ (2006) Band structure-controlled solid solution of Cd1−xZnxS photocatalyst for hydrogen production by water splitting. Int J Hydrog Energy 31:2018–2024

    CAS  Google Scholar 

  41. Zhang K, Jing DW, Xing CJ, Guo LJ (2007) Significantly improved photocatalytic hydrogen production activity over Cd1−xZnxS photocatalysts prepared by a novel thermal sulfuration method. Int J Hydrog Energy 32:4685–4691

    CAS  Google Scholar 

  42. Liu MC, Wang LZ, Lu GQ, Yao XD, Guo LJ (2011) Twins in Cd1−xZnxS solid solution: highly efficient photocatalyst for hydrogen generation from water. Energy Environ Sci 4:1372–1378

    CAS  Google Scholar 

  43. Kim MR, Park SY, Jang DJ (2010) Composition variation and thermal treatment of ZnxCd1−xS alloy nanoparticles to exhibit controlled and efficient luminescence. J Phys Chem C 114:6452–6457

    CAS  Google Scholar 

  44. Sadhu S, Patra A (2012) Lattice strain controls the carrier relaxation dynamics in CdxZn1−xS alloy quantum dots. J Phys Chem C 116:15167–15173

    CAS  Google Scholar 

  45. Nguyen AT, Lin WH, Lu YH, Chiou YD, Hsu YJ (2014) First demonstration of rainbow photocatalysts using ternary Cd1−xZnxSe nanorods of varying compositions. Appl Catal A Gen 476:140–147

    CAS  Google Scholar 

  46. Chen ZH, Peng WQ, Zhang K, Zhang J, Yanagida M, Han LY (2012) Surface ion transfer growth of ternary CdS1−xSex quantum dots and their electron transport modulation. Nanoscale 4:7690–7697

    CAS  Google Scholar 

  47. Liu SY, Zhang H, Qiao Y, Su XG (2012) One-pot synthesis of ternary CuInS2 quantum dots with near-infrared fluorescence in aqueous solution. RSC Adv 2:819–825

    CAS  Google Scholar 

  48. Liu Y, Dai FX, Zhao RY, Huai XD, Han JS, Wang L (2019) Aqueous synthesis of core/shell/shell CdSe/CdS/ZnS quantum dots for photocatalytic hydrogen generation. J Mater Sci 54:8571–8580. https://doi.org/10.1007/s10853-019-03484-x

    Article  CAS  Google Scholar 

  49. Hong SJ, Lee S, Jang JS, Lee JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787

    CAS  Google Scholar 

  50. Banerjee S, Mohapatra SK, Das PP, Misra M (2008) Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater 20:6784–6791

    CAS  Google Scholar 

  51. Zhao LL, Jia J, Yang ZY, Yu JY, Wang AL, Sang YH, Zhou WJ, Liu H (2017) One-step synthesis of CdS nanoparticles/MoS2 nanosheets heterostructure on porous molybdenum sheet for enhanced photocatalytic H2 evolution. Appl Catal B Environ 210:290–296

    CAS  Google Scholar 

  52. Liu GJ, Zhou ZH, Guo LJ (2011) Correlation between band structures and photocatalytic activities of CdxCuyZn1−xyS solid solution. Chem Phys Lett 509:43–47

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China [Grant Numbers 51772162, 51703112], the Taishan Scholars program, China, Postdoctoral Science Foundation [Grant Number 2017M622152], Natural Science Foundation of Shandong Province, China [Grant Number ZR2017BEM040], Talent Fund of Shandong Collaborative Innovation Center of Eco-Chemical Engineering [Grant Number XTCXQN18], Talent Development Fund Project of Jilin Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiyang Zhao or Lei Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Liu, Y., Wang, Y. et al. Construction of ternary CdxMo1−xSe quantum dots for enhanced photocatalytic hydrogen production. J Mater Sci 55, 1117–1125 (2020). https://doi.org/10.1007/s10853-019-04092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04092-5

Navigation