Skip to main content
Log in

Structural and transport properties of quenched and melt-spun BixSb2−xTe3 solid solutions (x = 0.40 and 0.48)

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on a detailed investigation of the structural and transport properties of BixSb2−xTe3 (x = 0.40 and 0.48) samples, prepared by either water quenching or melt-spinning (MS) and consolidated by spark plasma sintering, by means of X-ray diffraction, scanning and transmission electron microscopy, and transport property measurements (5–480 K). All the samples crystallize in the rhombohedral structure type of Bi2Te3. While the samples prepared by water quenching exhibit some segregations of the elements over the micron length scale, the MS samples are highly homogeneous. Unlike prior reports where an increase in the dimensionless thermoelectric figure of merit ZT has been observed in MS samples, we find that both series of samples show similar peak ZT values. Owing to slight variations in the hole concentration, the maximum ZT is shifted closer to room temperature in MS samples with a peak ZT of 1.1 achieved at 340 K for x = 0.48. Our results highlight the extreme sensitivity of the ZT values to the Bi content and, for a given chemical composition, to slight variations in the hole concentration and microstructure. We further demonstrate the good reproducibility of the MS technique indicating that this method enables controlling the defect concentration inherent to these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Rowe DM (ed) (2005) Thermoelectric handbook: macro to nano. Taylor & Francis, Boca Raton

    Google Scholar 

  2. Nikitin M, Skipidarov S (eds) (2016) Thermoelectrics for power generation. IntechOpen, London

    Google Scholar 

  3. Aranguren P (ed) (2018) Bringing thermoelectricity into reality. IntechOpen, London

    Google Scholar 

  4. Goldsmid HJ (1964) Thermoelectric refrigeration. Plenum Press, New York

    Book  Google Scholar 

  5. Rowe DM (ed) (2012) Thermoelectrics and its energy harvesting. CRC Press, Boca Raton, FL

    Google Scholar 

  6. Eibl O, Nielsch K, Peranio N, Völklein F (2015) Thermoelectric Bi2Te3 nanomaterials. Wiley, Weinheim

    Google Scholar 

  7. Goldsmid J (2014) Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 5:2577–2592

    Article  Google Scholar 

  8. Xie W, Tang X, Yan Y, Zhang Q, Tritt TM (2009) Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl Phys Lett 94:102111

    Article  Google Scholar 

  9. Fan S, Zhao J, Guo J, Yan Q, Ma J, Hng HH (2010) P-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Appl Phys Lett 96:182104

    Article  Google Scholar 

  10. Xie W, He J, Kang HJ, Tang X, Zhu S, Laver M, Wang S, Copley JRD, Brown CM, Zhang Q, Tritt TM (2010) Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett 10:3283–3289

    Article  CAS  Google Scholar 

  11. Xie W, Wang S, Zhu S, He J, Tang X, Zhang Q, Tritt TM (2013) High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. J Mater Sci 48:2745–2760. https://doi.org/10.1007/s10853-012-6895-z

    Article  CAS  Google Scholar 

  12. Glazov VM, Yatmanov YV, Ivanova AB (1986) Structural features of alloys of the Bi-Te system, produced by ultrafast quenching of the liquid-state. Inorg Mater USSR 22:520–526

    Google Scholar 

  13. Glazov VM, Yatmanov YV (1990) Features of the breakdown of semiconducting metastable solid-solutions of the systems BiSe(Te) and SbTe prepared by quenching from the liquid. Inorg Mater USSR 26:1965–1967

    Google Scholar 

  14. Koukharenko E, Frety N, Shepelevich VG, Tedenac JC (2000) Thermoelectric properties of Bi2Te3 material obtained by the ultrarapid quenching process route. J Alloys Compd 299:254–257

    Article  CAS  Google Scholar 

  15. Koukharenko E, Frety N, Shepelevich VG, Tedenac JC (2001) Electrical properties of Bi2−xSbxTe3 materials obtained by ultrarapid quenching. J Alloys Compd 327:1–4

    Article  CAS  Google Scholar 

  16. Horio Y, Yamashita H, Hayashi T (2004) Microstructure and crystal orientation of rapidly solidified (Bi, Sb)(2)(Te, Se)(3) alloys by the liquid quenching technique. Mater Trans 45:2757–2760

    Article  CAS  Google Scholar 

  17. Zheng Y, Zhang Q, Su X, Xie H, Shu S, Chen T, Tan G, Yan Y, Tang X, Uher C, Snyder GJ (2014) Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv Energy Mater 5:1401391

    Article  Google Scholar 

  18. Ohorodniichuk V, Dauscher A, Masschelein P, Candolfi C, Baranek P, Dalicieux P, Lenoir B (2016) Investigation of the nozzle diameter as a control parameter of the properties of melt-spun Sb2−xBixTe3. J Electron Mater 45:1419–1424

    Article  CAS  Google Scholar 

  19. Ohorodniichuk V, Candolfi C, Masschelein P, Baranek P, Dalicieux P, Dauscher A, Lenoir B (2016) Influence of preparation processing on the transport properties of melt-spun Sb2−xBixTe3+y. J Electron Mater 45:1561–1569

    Article  CAS  Google Scholar 

  20. Ohorodniichuk V, Dauscher A, Branco Lopez E, Migot S, Candolfi C, Lenoir B (2017) Structural and electrical properties characterization of Sb1.52Bi0.48Te3.0 melt-spun ribbons. Crystals 7:172–189

    Article  Google Scholar 

  21. Zheng Y, Tan G, Luo Y, Yan Y, Tang X (2017) Thermal stability of p-type BiSbTe alloys prepared by melt spinning and rapid sintering. Materials 10:617

    Article  Google Scholar 

  22. Deng R, Su X, Luo T, Li J, Liu W, Yan Y, Tang X (2018) Modulation of carrier concentration and microstructure for high performance BixSb2−xTe3 thermoelectrics prepared by rapid solidification. J Solid State Chem 264:141–147

    Article  CAS  Google Scholar 

  23. Deng R, Su X, Zheng Z, Liu W, Yan Y, Zhang Q, Dravid V, Uher C, Kanatzidis MG, Tang X (2018) Thermal conductivity in Bi0.5Sb1.5Te3+x and the role of dense dislocation arrays at grain boundaries. Sci Adv 4:5606

    Article  Google Scholar 

  24. Yoon JS, Song JM, Rahman JU, Lee S, Seo WS, Lee KH, Kim S, Kim HS, Kim S, Shin WH (2018) High thermoelectric performance of melt-spun BixSb2−xTe3 by synergistic effect of carrier tuning and phonon engineering. Acta Mater 158:289–296

    Article  CAS  Google Scholar 

  25. Murmu PP, Kennedy J, Suman S, Chong SV, Leveneur J, Storey J, Rubanov S, Ramanath G (2019) Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films. Mater Des 163:107549

    Article  CAS  Google Scholar 

  26. Alleno E, Berardan D, Byl C, Candolfi C, Daou R, Decourt R, Guilmeau E, Hébert S, Hejtmanek J, Masschelein P, Ohorodnichuk V, Pollet M, Populoh S, Ravot D, Rouleau O, Soulier M (2015) A round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co0.97Ni0.03Sb3. Rev Sci Inst 86:011301

    Article  CAS  Google Scholar 

  27. Caillat T, Carle M, Perrin D, Scherrer H, Scherrer S (1992) Study of the ternary Bi–Sb–Te phase diagram. J Phys Chem Solids 53:227–232

    Article  CAS  Google Scholar 

  28. Li G, Gadelrab KR, Souier T, Potapov PL, Chen G, Chiesa M (2012) Mechanical properties of BixSb2−xTe3 nanostructured thermoelectric materials. Nanotechnol 23:065703

    Article  CAS  Google Scholar 

  29. Caillat T, Gailliard L, Scherrer H, Scherrer S (1993) Transport properties analysis of single crystals grown by the traveling heater method. J Phys Chem Solids 54:575–581

    Article  CAS  Google Scholar 

  30. Champness CH, Chiang PT, Parekh P (1965) Thermoelectric properties of Bi2Te3–Sb2Te3 alloys. Can J Phys 43:653

    Article  CAS  Google Scholar 

  31. Testardi LR, Wiese JR (1961) Density anomalies in the Bi2Te3–Sb2Te3 system. Trans Metall Soc AIME 221:647–649

    CAS  Google Scholar 

  32. Volotskii MP, Gudkin TS, Dashevskii ZM, Kaidanov VI, Sgibnev IV (1974) Investigation of complex structure of band edges and of mechanism of carrier scattering in Bi–Sb–Te single crystals. Soviet Phys Semicond USSR 8:682–683

    Google Scholar 

  33. Gerovac N, Snyder GJ, Caillat T (2002) Thermoelectric properties of n-type polycrystalline BixSb2−xTe3 alloys,) Proceedings XXI interntional conference thermoelectrics, ICT02, IEEE, pp 31–34

  34. Stordeur M, Langhammer HT, Sobotta H, Riede V (1981) Valence band-structure of (Bi1−xSbx)2Te3 single crystals. Phys Stat Sol B 104:513–522

    Article  CAS  Google Scholar 

  35. Goldsmid HJ, Sharp JW (1999) Estimation of the thermal band gap of a semiconductor from seebeck coefficient. J Electron Mater 28:869–872

    Article  CAS  Google Scholar 

  36. Stölzer M, Stordeur M, Sobotta H, Riede V (1986) IR transmission investigations of (Bi1−xSbx)2Te3 single crystals. Phys. Stat. Sol. B 138:259–266

    Article  Google Scholar 

  37. Süssmann H, Heiliger W (1989) Seebeck coefficient and electrical conductivity in p-(Bi1−xSbx)2Te3 at room temperature. Phys Stat Sol A 80:535–539

    Article  Google Scholar 

  38. Xie W, He J, Zhu S, Holgate T, Wang S, Tang X, Zhang Q, Tritt TM (2011) Investigation of the sintering pressure and thermal conductivity anisotropy of melt-spun spark-plasma-sintered (Bi, Sb)2Te3 thermoelectric materials. J Mater Res 26:1791–1799

    Article  CAS  Google Scholar 

  39. Ebling DG, Jacquot A, Jägle M, Böttner H, Kühn U, Kirste L (2007) Structure and thermoelectric properties of nanocomposite bismuth telluride prepared by melt spinning or by partially alloying with IV–VI compounds. Phys Stat Sol (RRL) 1:238–240

    Article  CAS  Google Scholar 

  40. Böttner H, Ebling DG, Jacquot A, Kühn U, Schmidt J (2008) Melt spinning preparation of bismuth telluride and partially alloying with IV–VI compounds for thermoelectric application. Mater Res Soc Symp Proc 1044:U04-01

    Google Scholar 

  41. Ivanova LD, Petrova LI, Granatkina YV, Leontyev VG, Ivanov AS, Varlamov SA, Prilepo YP, Sychev AM, Chuik AG, Bashkov IV (2013) Thermoelectric and mechanical properties of the Bi0.5Sb1.5Te3 solid solution prepared by melt spinning. Inorg Mater 49:120–126

    Article  CAS  Google Scholar 

Download references

Acknowledgement

V.O. would like to acknowledge the support of EDF through the CIFRE convention N°2011/1329. The authors acknowledge support through the “Contrat-Plan-Etat-Region” 2014-2020 ENARBATIM and MAT-DS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Lenoir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohorodniichuk, V., El-Oualid, S., Dauscher, A. et al. Structural and transport properties of quenched and melt-spun BixSb2−xTe3 solid solutions (x = 0.40 and 0.48). J Mater Sci 55, 1092–1106 (2020). https://doi.org/10.1007/s10853-019-04073-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04073-8

Navigation