Skip to main content
Log in

A facile approach to synthesize in situ functionalized graphene oxide/epoxy resin nanocomposites: mechanical and thermal properties

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The complex preparation processes of GO/polymer composites are a limitation for their application. In this study, epoxy composites filled with in situ functionalized graphene oxide (GO) were prepared by a facile wet mixing and solvent evaporation method. The structure and composition of 3′,4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (2021P)-functionalized GO (GO-2021P) were characterized. With surface modification, GO became more thermally stable and changed its nature from hydrophilic to hydrophobic. The influences of surface functionalization on the morphology of GO, its dispersion in the epoxy matrix, the mechanical and thermal behavior of the composites were fully investigated. With grafting of 2021P, the dispersion/exfoliation status of GO and interfacial interaction between GO and epoxy matrix were much improved. For epoxy composite with 1.0 wt% GO-2021P, the tensile strength and Young’s modulus increased by 34.0% and 25.9%, respectively. Increased glass transition temperature and thermal stability were also observed by dynamic mechanical analysis and thermogravimetric analysis. High-performance functionalized GO/epoxy composites can be produced using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Han S, Meng Q, Araby S et al (2019) Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: experimental and numerical analysis. Compos Part Appl Sci Manuf 120:116–126. https://doi.org/10.1016/j.compositesa.2019.02.027

    Article  Google Scholar 

  2. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  Google Scholar 

  3. Li W, Zhou B, Wang M et al (2015) Silane functionalization of graphene oxide and its use as a reinforcement in bismaleimide composites. J Mater Sci 50:5402–5410. https://doi.org/10.1007/s10853-015-9084-z

    Article  Google Scholar 

  4. Zhuang YF, Cao XY, Zhang JN et al (2019) Monomer casting nylon/graphene nanocomposite with both improved thermal conductivity and mechanical performance. Compos Part Appl Sci Manuf 120:49–55. https://doi.org/10.1016/j.compositesa.2019.02.019

    Article  Google Scholar 

  5. Quiles-Díaz S, Enrique-Jimenez P, Papageorgiou DG et al (2017) Influence of the chemical functionalization of graphene on the properties of polypropylene-based nanocomposites. Compos Part Appl Sci Manuf 100:31–39. https://doi.org/10.1016/j.compositesa.2017.04.019

    Article  Google Scholar 

  6. Mahmood H, Tripathi M, Pugno N et al (2016) Enhancement of interfacial adhesion in glass fiber/epoxy composites by electrophoretic deposition of graphene oxide on glass fibers. Compos Sci Technol 126:149–157. https://doi.org/10.1016/j.compscitech.2016.02.016

    Article  Google Scholar 

  7. Gorelov B, Gorb A, Nadtochiy A et al (2019) Epoxy filled with bare and oxidized multi-layered graphene nanoplatelets: a comparative study of filler loading impact on thermal properties. J Mater Sci 54:9247–9266. https://doi.org/10.1007/s10853-019-03523-7

    Article  Google Scholar 

  8. Olowojoba GB, Kopsidas S, Eslava S et al (2017) A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide. J Mater Sci 52:7323–7344. https://doi.org/10.1007/s10853-017-0969-x

    Article  Google Scholar 

  9. Li Z, Young RJ, Wang R et al (2013) The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer 54:5821–5829. https://doi.org/10.1016/j.polymer.2013.08.026

    Article  Google Scholar 

  10. Hsu S-Y, Lin S-C, Wang J-A et al (2019) Preparation and characterization of silsesquioxane-graphene oxide modified soluble polyimide nanocomposites with excellent dispersibility and enhanced tensile properties. Eur Polym J 112:95–103. https://doi.org/10.1016/j.eurpolymj.2018.12.036

    Article  Google Scholar 

  11. Shen B, Zhai W, Tao M et al (2013) Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Compos Sci Technol 77:87–94. https://doi.org/10.1016/j.compscitech.2013.01.014

    Article  Google Scholar 

  12. Ribeiro H, da Silva WM, Neves JC et al (2015) Multifunctional nanocomposites based on tetraethylenepentamine-modified graphene oxide/epoxy. Polym Test 43:182–192. https://doi.org/10.1016/j.polymertesting.2015.03.010

    Article  Google Scholar 

  13. Guo S, Ma L, Song G et al (2018) Covalent grafting of triazine derivatives onto graphene oxide for preparation of epoxy composites with improved interfacial and mechanical properties. J Mater Sci 53:16318–16330. https://doi.org/10.1007/s10853-018-2788-0

    Article  Google Scholar 

  14. Ramezanzadeh B, Niroumandrad S, Ahmadi A et al (2016) Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros Sci 103:283–304. https://doi.org/10.1016/j.corsci.2015.11.033

    Article  Google Scholar 

  15. Shanmugharaj AM, Yoon JH, Yang WJ, Ryu SH (2013) Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths. J Colloid Interface Sci 401:148–154. https://doi.org/10.1016/j.jcis.2013.02.054

    Article  Google Scholar 

  16. Jiang T, Kuila T, Kim NH et al (2013) Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos Sci Technol 79:115–125. https://doi.org/10.1016/j.compscitech.2013.02.018

    Article  Google Scholar 

  17. Chen W-Q, Li Q-T, Li P-H et al (2015) In situ random co-polycondensation for preparation of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide. J Mater Sci 50:3860–3874. https://doi.org/10.1007/s10853-015-8890-7

    Article  Google Scholar 

  18. Wan YJ, Tang LC, Gong LX et al (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480. https://doi.org/10.1016/j.carbon.2013.12.050

    Article  Google Scholar 

  19. Xue G, Zhang B, Sun M et al (2019) Morphology, thermal and mechanical properties of epoxy adhesives containing well-dispersed graphene oxide. Int J Adhes Adhes 88:11–18. https://doi.org/10.1016/j.ijadhadh.2018.10.011

    Article  Google Scholar 

  20. Soucek MD, Abu-Shanab OL, Anderson CD, Wu S (1998) Kinetic modeling of the crosslinking reaction of cycloaliphatic epoxides with carboxyl functionalized acrylic resins: Hammett treatment of cycloaliphatic epoxides. Macromol Chem Phys 199:1035–1042. https://doi.org/10.1002/(SICI)1521-3935(19980601)199:6%3c1035:AID-MACP1035%3e3.0.CO;2-P

    Article  Google Scholar 

  21. Wu S, Soucek MD (1998) Kinetic modelling of crosslinking reactions for cycloaliphatic epoxides with hydroxyl-and carboxyl-functionalized acrylic copolymers: 1. pH and temperature effects. Polymer 39:5747–5759. https://doi.org/10.1016/S0032-3861(98)00077-9

    Article  Google Scholar 

  22. Wu L, Jiang X, Jiang X (2018) Proton transfer at the interaction interface of graphene oxide. Anal Chem 90:10223–10230. https://doi.org/10.1021/acs.analchem.8b01596

    Article  Google Scholar 

  23. Chen W, Yan L (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2:559–563. https://doi.org/10.1039/B9NR00191C

    Article  Google Scholar 

  24. Paredes JI, Villar-Rodil S, Martinez-Alonso A et al (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564. https://doi.org/10.1021/la801744a

    Article  Google Scholar 

  25. Bao C, Guo Y, Song L et al (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290–13298. https://doi.org/10.1039/c1jm11434d

    Article  Google Scholar 

  26. Yao H, Hawkins SA, Sue H-J (2017) Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Compos Sci Technol 146:161–168. https://doi.org/10.1016/j.compscitech.2017.04.026

    Article  Google Scholar 

  27. Nogales A, Hsiao BS, Somani RH et al (2001) Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies. Polymer 42:5247–5256. https://doi.org/10.1016/S0032-3861(00)00919-8

    Article  Google Scholar 

  28. Wang X, Jin J, Song M (2013) An investigation of the mechanism of graphene toughening epoxy. Carbon 65:324–333. https://doi.org/10.1016/j.carbon.2013.08.032

    Article  Google Scholar 

  29. Ribeiro H, Silva WM, Rodrigues M-TF et al (2013) Glass transition improvement in epoxy/graphene composites. J Mater Sci 48:7883–7892. https://doi.org/10.1007/s10853-013-7478-3

    Article  Google Scholar 

  30. Eigler S (2016) Controlled chemistry approach to the oxo-functionalization of graphene. Chem Eur J 22:7012–7027. https://doi.org/10.1002/chem.201600174

    Article  Google Scholar 

  31. Tang L-C, Wan Y-J, Yan D et al (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27. https://doi.org/10.1016/j.carbon.2013.03.050

    Article  Google Scholar 

  32. Yoon S-H, Jung H-T (2017) Grafting polycarbonate onto graphene nanosheets: synthesis and characterization of high performance polycarbonate–graphene nanocomposites for ESD/EMI applications. RSC Adv 7:45902–45910. https://doi.org/10.1039/C7RA07537E

    Article  Google Scholar 

  33. Wan Y-J, Gong L-X, Tang L-C et al (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos Part Appl Sci Manuf 64:79–89. https://doi.org/10.1016/j.compositesa.2014.04.023

    Article  Google Scholar 

  34. Choi E-Y, Han TH, Hong J et al (2010) Noncovalent functionalization of graphene with end-functional polymers. J Mater Chem 20:1907–1912. https://doi.org/10.1039/B919074K

    Article  Google Scholar 

  35. Stankovich S, Piner RD, Nguyen SBT, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347. https://doi.org/10.1016/j.carbon.2006.06.004

    Article  Google Scholar 

  36. Park S, Suk JW, An J et al (2012) The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers. Carbon 50:4573–4578. https://doi.org/10.1016/j.carbon.2012.05.042

    Article  Google Scholar 

  37. Zhao S, Chang H, Chen S et al (2016) High-performance and multifunctional epoxy composites filled with epoxide-functionalized graphene. Eur Polym J 84:300–312. https://doi.org/10.1016/j.eurpolymj.2016.09.036

    Article  Google Scholar 

  38. Bortz DR, Heras EG, Martin-Gullon I (2011) Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45:238–245. https://doi.org/10.1021/ma201563k

    Article  Google Scholar 

  39. Qiu SL, Wang CS, Wang YT et al (2011) Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin. Express Polym Lett 5:809–818. https://doi.org/10.3144/expresspolymlett.2011.79

    Article  Google Scholar 

  40. Saeb MR, Rastin H, Nonahal M et al (2017) Cure kinetics of epoxy/MWCNTs nanocomposites: nonisothermal calorimetric and rheokinetic techniques. J Appl Polym Sci 134:45221. https://doi.org/10.1002/app.45221

    Article  Google Scholar 

  41. Xie H, Liu B, Sun Q et al (2005) Cure kinetic study of carbon nanofibers/epoxy composites by isothermal DSC. J Appl Polym Sci 96:329–335. https://doi.org/10.1002/app.21415

    Article  Google Scholar 

  42. Umer R, Li Y, Dong Y et al (2015) The effect of graphene oxide (GO) nanoparticles on the processing of epoxy/glass fiber composites using resin infusion. Int J Adv Manuf Technol 81:2183–2192. https://doi.org/10.1007/s00170-015-7427-1

    Article  Google Scholar 

  43. Abdalla M, Dean D, Robinson P, Nyairo E (2008) Cure behavior of epoxy/MWCNT nanocomposites: the effect of nanotube surface modification. Polymer 49:3310–3317. https://doi.org/10.1016/j.polymer.2008.05.016

    Article  Google Scholar 

  44. Prolongo MG, Salom C, Arribas C et al (2016) Influence of graphene nanoplatelets on curing and mechanical properties of graphene/epoxy nanocomposites. J Therm Anal Calorim 125:629–636. https://doi.org/10.1007/s10973-015-5162-3

    Article  Google Scholar 

  45. Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8:2045–2049. https://doi.org/10.1021/nl801384y

    Article  Google Scholar 

  46. Huang T, Lu R, Su C et al (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4:2699–2708. https://doi.org/10.1021/am3003439

    Article  Google Scholar 

  47. Yang L, Phua SL, Toh CL et al (2013) Polydopamine-coated graphene as multifunctional nanofillers in polyurethane. RSC Adv 3:6377–6385. https://doi.org/10.1039/C3RA23307C

    Article  Google Scholar 

  48. Wang Y, Shi Z, Yu J et al (2012) Tailoring the characteristics of graphite oxide nanosheets for the production of high-performance poly(vinyl alcohol) composites. Carbon 50:5525–5536. https://doi.org/10.1016/j.carbon.2012.07.042

    Article  Google Scholar 

  49. Spanos KN, Anifantis NK (2016) Finite element prediction of stress transfer in graphene nanocomposites: the interface effect. Compos Struct 154:269–276. https://doi.org/10.1016/j.compstruct.2016.07.058

    Article  Google Scholar 

  50. Amraei J, Jam JE, Arab B, Firouz-Abadi RD (2018) Effect of interphase zone on the overall elastic properties of nanoparticle-reinforced polymer nanocomposites. J Compos Mater 53:1261–1274. https://doi.org/10.1177/0021998318798443

    Article  Google Scholar 

  51. Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem 22:3637–3646. https://doi.org/10.1039/C2JM15062J

    Article  Google Scholar 

  52. Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331. https://doi.org/10.1038/nnano.2008.96

    Article  Google Scholar 

  53. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25. https://doi.org/10.1016/j.polymer.2010.11.042

    Article  Google Scholar 

  54. Yousefi N, Lin X, Zheng Q et al (2013) Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59:406–417. https://doi.org/10.1016/j.carbon.2013.03.034

    Article  Google Scholar 

  55. Wei Y, Hu X, Jiang Q et al (2018) Influence of graphene oxide with different oxidation levels on the properties of epoxy composites. Compos Sci Technol 161:74–84. https://doi.org/10.1016/j.compscitech.2018.04.007

    Article  Google Scholar 

  56. Li Z, Wang R, Young RJ et al (2013) Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer 54:6437–6446. https://doi.org/10.1016/j.polymer.2013.09.054

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. JC2018015). The authors are very grateful for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, G., Zhang, B., Xing, J. et al. A facile approach to synthesize in situ functionalized graphene oxide/epoxy resin nanocomposites: mechanical and thermal properties. J Mater Sci 54, 13973–13989 (2019). https://doi.org/10.1007/s10853-019-03901-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03901-1

Navigation