Skip to main content
Log in

Glass transition improvement in epoxy/graphene composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene oxide nanoplatelets (GO) were prepared from expanded graphite (EG) and functionalized with triethylenetetramine (GO-TETA). The GO-TETA consisted of a few layers of graphene (~4–6 layers), as determined by atomic force microscopy and Raman spectroscopy. X-ray photoelectron spectroscopy showed that the TETA was covalently linked to the GO in the GO-TETA sample. Epoxy composites based on the diglycidyl ether of bisphenol A with TETA as a hardener and with 0.5–3.0 wt% additions of EG and GO-TETA were investigated. The results showed that the addition of the nanofillers led to an increase of ~20 °C in the glass transition temperature. A slight increase in the ratio of the elastic modulus/hardness of the nanocomposites was observed by nanoindentation tests carried out at a depth range of 300 nm–1.3 μm; these tests indicated a tendency of increased fracture toughness. Microindentation had an enhancement of 40 % in hardness for the 1 wt% composite with GO-TETA relative to the corresponding value for the neat epoxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Endo M, Strano MS, Ajayan PM (2008) Top Appl Phys 111(62):13

    Article  CAS  Google Scholar 

  2. Noorden BRV (2011) Nature 469:14

    Article  Google Scholar 

  3. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Prog Polym Sci 35:1350

    Article  CAS  Google Scholar 

  4. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Polymer 52:5

    Article  CAS  Google Scholar 

  5. Kuilla T, Bose S, Kumar A, Khanra P, Kim NH, Lee JH (2012) Prog Mater Sci 57:1061

    Article  Google Scholar 

  6. Brodie BC (1860) Ann Chim Phys 59:466

    Google Scholar 

  7. Staudenmaier L (1898) Ber Dtsch Chem Ges 31:1481

    Article  CAS  Google Scholar 

  8. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  9. Park S, Ruoff RS (2009) Nat Nanotechnol 4:217

    Article  CAS  Google Scholar 

  10. Wang G, Shen X, Wang B, Yao J, Park J (2009) Carbon 47:1359

    Article  CAS  Google Scholar 

  11. Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ et al (2011) Angew Chem Int 50:3173

    Article  CAS  Google Scholar 

  12. Wang ZW, Shirley MD, Meikle ST, Whitby RLD, Mikhalovsky SV (2009) Carbon 47:73

    Article  CAS  Google Scholar 

  13. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) Compos Sci Technol 72(12):1459

    Article  CAS  Google Scholar 

  14. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) J Am Chem Soc 128:7720

    Article  CAS  Google Scholar 

  15. Overney RM, Buenviaje C, Luginbuhl R, Dinelli F (2000) J Therm Anal 59:205

    Article  CAS  Google Scholar 

  16. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Ruoff RS et al (2008) Nat Nanotechnol 3:327

    Article  CAS  Google Scholar 

  17. Liu G, Zhang H, Zhang D, Zhang Z, An X, Yi X (2012) J Mater Sci 47:6891. doi:10.1007/s10853-012-6633-6

    Article  CAS  Google Scholar 

  18. Hu Y, Shen J, Li N, Ma H, Shi M, Yan B, Huang W, Wang W et al (2010) Compos Sci Technol 70:2176

    Article  CAS  Google Scholar 

  19. Bortz DR, Heras EG, Martin-Gullon I (2012) Macromolecules 45:238

    Article  CAS  Google Scholar 

  20. Zaman I, Phan TT, Kuan HC, Meng Q, La Bao LT, Luong L, Youssf O, Ma J (2011) Polymer 52:1603

    Article  CAS  Google Scholar 

  21. Martin-Gallego M, Hernández M, Lorenzo V, Verdejo R, Lopez-Manchado MA, Sangermano M (2012) Polymer 53:1831

    Article  CAS  Google Scholar 

  22. Putz KW, Palmeri MJ, Cohn RB, Andrews R, Brinson LC (2008) Macromolecules 41:6752

    Article  CAS  Google Scholar 

  23. Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010) J Mater Chem 20:9635

    Article  CAS  Google Scholar 

  24. Yang Z, McElrath K, Bahr J, D’Souza NA (2012) Compos B 43:2079

    Article  CAS  Google Scholar 

  25. Martin-Gallego M, Verdejo R, Lopez-Manchado M, Sangermano M (2011) Polymer 52(21):4664

    Article  CAS  Google Scholar 

  26. Briscoe BJ, Fiori L, Pelillo E (1998) J Phys D: Appl Phys 31:2395

    Article  CAS  Google Scholar 

  27. Lee H, Mall S, He P, Shi D, Narasimhadevara S, Yeo-Heung Y et al (2007) Compos B 38:58

    Article  CAS  Google Scholar 

  28. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  Google Scholar 

  29. Salavagione HJ, Martínez G, Ellis G (2011) Macromol Rapid Commun 32:1771

    Article  CAS  Google Scholar 

  30. Li XF, Lau KT, Yin YS (2008) Compos Sci Technol 68:2876

    Article  CAS  Google Scholar 

  31. Sánchez M, Rams J, Campo M, Jiménez-Suárez A, Ureña A (2011) Compos B 42:638

    Article  Google Scholar 

  32. Zhang YF, Bai SL, Li XK, Zhang Z (2009) J Polym Sci B: Polym Phys 47:1030

    Article  CAS  Google Scholar 

  33. Bartolomeo P, Irigoyen M, Aragon E, Frizzi M, Perrin FX (2001) Polym Degrad Stabil 72(1):63

    Article  CAS  Google Scholar 

  34. Low IM, Shi C (1998) J Mater Sci Lett 17:1181. doi:10.1023/A:1006517005082

    Article  CAS  Google Scholar 

  35. ASTM-D 3418–82 (1988) Standard test method for transition temperatures of polymers by thermal analysis. American Society for Testing and Materials, Philadelphia, p 380

    Google Scholar 

  36. Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2009) Langmuir 25:5957

    Article  CAS  Google Scholar 

  37. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Nano Lett 10:751

    Article  CAS  Google Scholar 

  38. Guardia L, Fernandez-Merino MJ, Paredes JI, Solis-Fernandez P, Villar-Rodil S, Martinez-Alonso A et al (2011) Carbon 49:1653

    Article  CAS  Google Scholar 

  39. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F et al (2006) Phys Rev Lett 97:18

    Google Scholar 

  40. Malard LM, Nilsson J, Elias DC, Brant JC, Plentz F, Alves ES et al (2007) Phys Rev B 76(20):201401

    Article  Google Scholar 

  41. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C et al (2007) Nano Lett 7:238

    Article  CAS  Google Scholar 

  42. Koh YK, Bae MH, Cahill DG, Pop E (2011) Am Chem Soc Nano 5:269

    CAS  Google Scholar 

  43. Jeong HK, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH (2009) Chem Phys Lett 470:255

    Article  CAS  Google Scholar 

  44. Silva WM, Ribeiro H, Seara LM, Calado HDR, Ferlauto AS, Paniago RM et al (2012) J Braz Chem Soc 23:1078

    Article  CAS  Google Scholar 

  45. Ma PC, Moa SY, Tangb BZ, Kim JK (2010) Carbon 48:1824

    Article  CAS  Google Scholar 

  46. Wang H, Maiyalagan T, Wang X (2012) ACS Catal 2:781

    Article  CAS  Google Scholar 

  47. Xia W, Wang Y, Bergsträßer R, Kundu S, Muhler M (2007) Appl Surf Sci 254:247

    Article  CAS  Google Scholar 

  48. Yang DQ, Rochette JF, Sacher E (2005) Langmuir 21:8539

    Article  CAS  Google Scholar 

  49. Chiang YC, Lin WH, Chang YC (2011) Appl Surf Sci 257:2401

    Article  CAS  Google Scholar 

  50. Yang K, Gu M, Guo Y, Pan X, Mu G (2009) Carbon 47:1723

    Article  CAS  Google Scholar 

  51. Das B, Prasad KE, Ramamurty U, Rao CNR (2009) Nanotechnology 20:125705

    Article  Google Scholar 

  52. Shin KY, Hong JY, Lee S, Jang J (2012) J Mater Chem 22:7871

    Article  CAS  Google Scholar 

  53. Penumadu D, Dutta A, Pharr GM, Files B (2003) J Mater Res 18:1849

    Article  CAS  Google Scholar 

  54. Shen L, Wang L, Liu T, He C (2006) Macromol Mater Eng 291:1358

    Article  CAS  Google Scholar 

  55. Chatterjee S, Wang JW, Kuo WS, Tai NH, Salzmann C, Li WL et al (2012) Chem Phys Lett 531:6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Petrobras. H. Ribeiro is grateful to the Brazilian agency CNPq for financial support. We thank Professor José Rubens G. Carneiro and André Bragança of Mechanical Engineering/PUC-Minas for the microindentation tests. The authors are also thankful to the Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono, Centro de Microscopia/UFMG and Nacional de Grafite Company (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaura Goulart Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, H., Silva, W.M., Rodrigues, MT.F. et al. Glass transition improvement in epoxy/graphene composites. J Mater Sci 48, 7883–7892 (2013). https://doi.org/10.1007/s10853-013-7478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7478-3

Keywords

Navigation