Skip to main content

Advertisement

Log in

Synthesis of uniform silica nanospheres wrapped in nitrogen-doped carbon nanosheets with stable lithium-ion storage properties

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silica is one of the most abundant resources on the earth, attracting widespread attention in the new energy field. Due to the high theoretical specific capacity and stable physicochemical properties, silica is considered as potential anode materials for lithium-ion batteries (LIBs). However, the main drawbacks for silica materials are the poor electronic conductivity and large volume expansion effect in the lithium insertion and deinsertion process, which cause material pulverization and the decline in capacity. In this work, a new type of nitrogen-doped carbon nanosheets/silica composites (NCSCs) is successfully fabricated via a facile synthesis strategy, whose advantage of this method is the simultaneous completion of nitrogen doping and carbon nanosheets coating in one step. Besides, silica nanospheres with controllable and uniform particle size are utilized to explore lithium storage performance of the silica-based composites by comparing the difference in lithium storage performance of silica nanospheres with different particle sizes. Specifically, the large specific capacity of silica combines with the excellent conductivity of carbon nanosheets, providing the superior electrochemical performance for the NCSCs. Consequently, the NCSCs 1 exhibits a reversible specific capacity of 254.6 mAh g−1 after the 500th cycle at 2 A g−1. The above results fully indicate that the NCSCs are a potential anode material for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 1

Similar content being viewed by others

References

  1. Meng J, Cao Y, Suo Y, Liu Y, Zhang J, Zheng X (2015) Facile fabrication of 3D SiO2@graphene aerogel composites as anode material for lithium ion batteries. Electrochim Acta 176:1001–1009

    Article  CAS  Google Scholar 

  2. Cui J, Cheng F, Lin J, Yang J, Jiang K, Wen Z, Sun J (2017) High surface area C/SiO2 composites from rice husks as a high-performance anode for lithium ion batteries. Powder Technol 311:1–8

    Article  CAS  Google Scholar 

  3. Jia D, Wang K, Huang J (2017) Filter paper derived nanofibrous silica-carbon composite as anodic material with enhanced lithium storage performance. Chem Eng J 317:673–686

    Article  CAS  Google Scholar 

  4. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  Google Scholar 

  5. Yuan D, Cheng J, Qu G, Li X, Ni W, Wang B, Liu H (2016) Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. J Power Sources 301:131–137

    Article  CAS  Google Scholar 

  6. Wang H, Wu P, Qu M, Si L, Tang Y, Zhou Y, Lu T (2015) Highly reversible and fast lithium storage in graphene-wrapped SiO2 nanotube network. Chemelectrochem 2(4):508–511

    Article  CAS  Google Scholar 

  7. Xia Y, Xiao Z, Dou X, Huang H, Lu X, Yan R, Gan Y, Zhu W, Tu J, Zhang W, Tao X (2013) Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 7(8):7083–7092

    Article  CAS  Google Scholar 

  8. Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8(15):1703259

    Article  Google Scholar 

  9. Balogun M-S, Huang Y, Qiu W, Yang H, Ji H, Tong Y (2017) Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater Today 20(8):425–451

    Article  CAS  Google Scholar 

  10. Park GD, Lee J-K, Kang YC (2017) Design and synthesis of Janus-structured mutually doped SnO2-Co3O4 hollow nanostructures as superior anode materials for lithium-ion batteries. J Mater Chem A 5(48):25319–25327

    Article  CAS  Google Scholar 

  11. Gao J, Cheng X, Lou S, Ma Y, Zuo P, Du C, Gao Y, Yin G (2017) Self-doping Ti1−xNb2−xO7 anode material for lithium-ion battery and its electrochemical performance. J Alloys Compd 728:534–540

    Article  CAS  Google Scholar 

  12. Liu Z, Chang X, Wang T, Li W, Ju H, Zheng X, Wu X, Wang C, Zheng J, Li X (2017) Silica-derived hydrophobic colloidal nano-Si for lithium-ion batteries. ACS Nano 11(6):6065–6073

    Article  CAS  Google Scholar 

  13. Ren Y, Yang B, Wei H, Ding J (2016) Electrospun SiO2/C composite fibers as durable anode materials for lithium ion batteries. Solid State Ionics 292:27–31

    Article  CAS  Google Scholar 

  14. Chang W-S, Park C-M, Kim J-H, Kim Y-U, Jeong G, Sohn H-J (2012) Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy Environ Sci 5(5):6895–6899

    Article  CAS  Google Scholar 

  15. Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q (2013) Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci Rep 3:1568

    Article  Google Scholar 

  16. Chang W-S, Park C-M, Kim J-H, Kim Y-U, Jeong G, Sohn H-J (2012) Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy Environ Sci 5(5):6895–6899

    Article  CAS  Google Scholar 

  17. Yuan Y, Wang S, Kang Z, Jiao S (2015) Facile synthesis of SiO2/C composite and its application as anode material for lithium ion batde. Electrochemistry 83(6):421–424

    Article  CAS  Google Scholar 

  18. Li M, Yu Y, Li J, Chen B, Wu X, Tian Y, Chen P (2015) Nanosilica/carbon composite spheres as anodes in Li-ion batteries with excellent cycle stability. J Mater Chem A 3(4):1476–1482

    Article  CAS  Google Scholar 

  19. Yao Y, Zhang J, Xue L, Huang T, Yu A (2011) Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries. J Power Sources 196(23):10240–10243

    Article  CAS  Google Scholar 

  20. Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L (2008) Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochem Commun 10(12):1876–1878

    Article  CAS  Google Scholar 

  21. Xu H, Zhang S, He W, Zhang X, Yang G, Zhang J, Shi X, Wang L (2016) SiO2-carbon nanocomposite anodes with a 3D interconnected network and porous structure from bamboo leaves. Rsc Adv 6(3):1930–1937

    Article  CAS  Google Scholar 

  22. Wu L, Zhou H, Yang J, Zhou X, Ren Y, Nie Y, Chen S (2017) Carbon coated mesoporous Si anode prepared by a partial magnesiothermic reduction for lithium-ion batteries. J Alloys Compd 716:204–209

    Article  CAS  Google Scholar 

  23. Wu X, Shi Z-Q, Wang C-Y, Jin J (2015) Nanostructured SiO2/C composites prepared via electrospinning and their electrochemical properties for lithium ion batteries. J Electroanal Chem 746:62–67

    Article  CAS  Google Scholar 

  24. Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471

    Article  CAS  Google Scholar 

  25. Han J, Chen G, Yan T, Liu H, Shi L, An Z, Zhang J, Zhang D (2018) Creating graphene-like carbon layers on SiO2 anodes via a layer-by-layer strategy for lithium-ion battery. Chem Eng J 347:273–279

    Article  CAS  Google Scholar 

  26. Zhao Y, Liu Z, Zhang Y, Mentbayeva A, Wang X, Maximov MY, Liu B, Bakenov Z, Yin F (2017) Facile synthesis of SiO2@C nanoparticles anchored on MWNT as high-performance anode materials for li-ion batteries. Nanosc Res Lett 12(1):459

    Article  Google Scholar 

  27. Tian L-L, Wei X-Y, Zhuang Q-C, Jiang C-H, Wu C, Ma G-Y, Zhao X, Zong Z-M, Sun S-G (2014) Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage. Nanoscale 6(11):6075–6083

    Article  CAS  Google Scholar 

  28. Biswas K, De D, Bandyopadhyay J, Sen P (2018) Differential antibacterial response exhibited by graphene nanosheets toward gram-positive bacterium Staphylococcus aureus. IET Nanobiotechnol 12(6):733–740

    Article  Google Scholar 

  29. Cao X, Chuan X, Li S, Huang D, Cao G (2016) Hollow silica spheres embedded in a porous carbon matrix and its superior performance as the anode for lithium-ion batteries. Part Part Syst Charact 33(2):110–117

    Article  CAS  Google Scholar 

  30. Li X-H, Kurasch S, Kaiser U, Antonietti M (2012) Synthesis of monolayer-patched graphene from glucose. Angew Chem Int Ed 51(38):9689–9692

    Article  CAS  Google Scholar 

  31. Mohammadi A, Barikani M, Doctorsafaei AH, Isfahani AP, Shams E, Ghalei B (2018) Aqueous dispersion of polyurethane nanocomposites based on calix 4 arenes modified graphene oxide nanosheets: preparation, characterization, and anti-corrosion properties. Chem Eng J 349:466–480

    Article  CAS  Google Scholar 

  32. Zhang J-J, Wei Z, Huang T, Liu Z-L, Yu A-S (2013) Carbon coated TiO2-SiO2 nanocomposites with high grain boundary density as anode materials for lithium-ion batteries. J Mater Chem A 1(25):7360–7369

    Article  CAS  Google Scholar 

  33. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J (2011) Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J Mater Chem 21(22):8038–8044

    Article  CAS  Google Scholar 

  34. Yuan Z, Zhao N, Shi C, Liu E, He C, He F (2016) Synthesis of SiO2/3D porous carbon composite as anode material with enhanced lithium storage performance. Chem Phys Lett 651:19–23

    Article  CAS  Google Scholar 

  35. Antonelou A, Benekou V, Dracopoulos V, Kollia M, Yannopoulos SN (2018) Laser-induced transformation of graphitic materials to two-dimensional graphene-like structures at ambient conditions. Nanotechnology 29(38):384001

    Article  Google Scholar 

  36. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11):6337–6342

    Article  CAS  Google Scholar 

  37. Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21(14):5430–5434

    Article  CAS  Google Scholar 

  38. Bian S-W, Ma Z, Song W-G (2009) Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter. J Phys Chem C 113(20):8668–8672

    Article  CAS  Google Scholar 

  39. Cui Y, Zhang J, Zhang G, Huang J, Liu P, Antonietti M, Wang X (2011) Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J Mater Chem 21(34):13032–13039

    Article  CAS  Google Scholar 

  40. Wang S, Liu B, Zhi G, Gong X, Zhang J (2018) Diverse nitrogen-doped 2D layered mesoporous MoS2/reduced graphene oxide composites with superior structural features for enhancing the performance of lithium ion batteries. Appl Surf Sci 458:954–963

    Article  CAS  Google Scholar 

  41. Jia D, Wang K, Huang J (2017) Filter paper derived nanofibrous silica-carbon composite as anodic material with enhanced lithium storage performance. Chem Eng J 317:673–686

    Article  CAS  Google Scholar 

  42. Lener G, Garcia-Blanco AA, Furlong O, Nazzarro M, Sapag K, Barraco DE, Leiva EPM (2018) A silica/carbon composite as anode for lithium-ion batteries with a large rate capability: Experiment and theoretical considerations. Electrochim Acta 279:289–300

    Article  CAS  Google Scholar 

  43. Lisowska-Oleksiak A, Nowak AP, Wicikowska B (2014) Aquatic biomass containing porous silica as an anode for lithium ion batteries. RSC Adv 4(76):40439–40443

    Article  CAS  Google Scholar 

  44. Wang H, Wu P, Shi H, Tang W, Tang Y, Zhou Y, She P, Lu T (2015) Hollow porous silicon oxide nanobelts for high-performance lithium storage. J Power Sources 274:951–956

    Article  CAS  Google Scholar 

  45. Wang C, Shen W, Liu H (2014) Nitrogen-doped carbon coated Li3V2(PO4) 3 derived from a facile in situ fabrication strategy with ultrahigh-rate stable performance for lithium-ion storage. New J Chem 38(1):430–436

    Article  CAS  Google Scholar 

  46. Li Y-J, Guo C, Yue L-S, Qu W-J, Chen N, Dai Y-J, Chen R-J, Wu F (2018) Organosilicon-group-derived silica-ionogel electrolyte for lithium ion batteries. Rare Met 37(6):504–509

    Article  CAS  Google Scholar 

  47. Li H-H, Wu X-L, Sun H-Z, Wang K, Fan C-Y, Zhang L-L, Yang F-M, Zhang J-P (2015) Dual-porosity SiO2/C nanocomposite with enhanced lithium storage performance. J Phys Chem C 119(7):3495–3501

    Article  CAS  Google Scholar 

  48. Babaa MR, Moldabayeva A, Karim M, Zhexembekova A, Zhang Y, Bakenov Z, Molkenova A, Taniguchi I (2017) Development of a novel SiO2 based composite anode material for Li-ion batteries. Mater Today-Proc 4(3):4542–4547

    Article  Google Scholar 

  49. Jiang Y, Mu D, Chen S, Wu B, Zhao Z, Wu Y, Ding Z, Wu F (2018) Hollow silica spheres with facile carbon modification as an anode material for lithium-ion batteries. J Alloys Compd 744:7–14

    Article  CAS  Google Scholar 

  50. Gong H, Li N, Qian Y (2013) Synthesis of SiO2/C nanocomposites and their electrochemical properties. Int J Electrochem Sci 8(7):9811–9817

    CAS  Google Scholar 

  51. Fu D, Luan B, Argue S, Bureau MN, Davidson IJ (2012) Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources 206:325–333

    Article  CAS  Google Scholar 

  52. Tu J, Yuan Y, Zhan P, Jiao H, Wang X, Zhu H, Jiao S (2014) Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance. J Phys Chem C 118(14):7357–7362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fund for the Frontier Research of the Discipline (No. 2015XKQY03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Xing or Xichuan Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Chen, M., Deng, Y. et al. Synthesis of uniform silica nanospheres wrapped in nitrogen-doped carbon nanosheets with stable lithium-ion storage properties. J Mater Sci 54, 12767–12781 (2019). https://doi.org/10.1007/s10853-019-03812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03812-1

Navigation