Skip to main content

Advertisement

Log in

Conversion of residue biomass into value added carbon materials: utilisation of sugarcane bagasse and ionic liquids

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Presented herein is the nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) production from a residue, sugarcane bagasse, using 1-butyl-3-methylimidazolium chloride [C4MIM]Cl as the solvent and nitrogen source, and ferrocene as the catalyst source. N-MWCNTs were synthesised using the floating catalyst chemical vapour deposition method at 850 °C. The synthesised N-MWCNTs were characterised using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray diffraction (XRD) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy. Hollow tubular structures of N-MWCNTs were observed using TEM. These observations correlated morphology from SEM which showed spaghetti-like structures, and also EDS detected the presence of nitrogen. Raman spectroscopy indicated MWCNT bands, around 1350 and 1580 cm−1 assigned to D-band and G-band due to defective and graphitic carbon vibrations, respectively. Also, XRD patterns showed typical N-MWCNT structures with a strong intensity peak at 2θ = 26.4° which was indexed as the C(002) reflection of graphite. TGA showed an N-CNTs thermogram curve, with the main decomposition temperature around 590 °C. The study showed that N-MWCNTs were successfully synthesised from sugarcane bagasse. The study significantly establishes a strategy for utilisation and value addition of a residue which is abundant from sugar production mills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energy Rev 55:909–941. https://doi.org/10.1016/j.rser.2015.11.026

    Article  CAS  Google Scholar 

  2. Herrero M, Ibañez E (2018) Green extraction processes, biorefineries and sustainability: recovery of high added-value products from natural sources. J Supercrit Fluids 134:252–259. https://doi.org/10.1016/j.supflu.2017.12.002

    Article  CAS  Google Scholar 

  3. Hess TM, Sumberg J, Biggs T, Georgescu M, Haro-Monteagudo D, Jewitt G, Ozdogan M, Marshall M, Thenkabail P, Daccache A, Marin F, Knox JW (2016) A sweet deal? Sugarcane, water and agricultural transformation in sub-saharan africa. Glob Environ Change 39:181–194. https://doi.org/10.1016/j.gloenvcha.2016.05.003

    Article  Google Scholar 

  4. Satlewal A, Agrawal R, Das P, Bhagia S, Pu Y, Puri SK, Ramakumar S, Ragauskas AJ (2018) Assessing the facile pretreatments of bagasse for efficient enzymatic conversion and their impacts on structural and chemical properties. ACS Sustain Chem Eng 7(1):1095–1104

    Article  CAS  Google Scholar 

  5. Pin TC, Nakasu PY, Mattedi S, Rabelo SC, Costa AC (2019) Screening of protic ionic liquids for sugarcane bagasse pretreatment. Fuel 235:1506–1514

    Article  CAS  Google Scholar 

  6. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2(1):1–8

    Google Scholar 

  7. Wulandari WT, Rochliadi A, Arcana IM (2016) Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf Ser Mater Sci Eng 107(1):012045

    Article  Google Scholar 

  8. Oliveira FBd, Bras J, Pimenta MTB, Curvelo AAdS, Belgacem MN (2016) Production of cellulose nanocrystals from sugarcane bagasse fibers and pith. Ind Crops Prod 93:48–57. https://doi.org/10.1016/j.indcrop.2016.04.064

    Article  CAS  Google Scholar 

  9. de Miranda CMR, Neta JV, Ferreira LFR, Júnior WAG, do Nascimento CS, Gomes EDB, Mattedi S, Soares CM, Lima ÁS (2019) Pineapple crown delignification using low-cost ionic liquid based on ethanolamine and organic acids. Carbohyd Polym 206:302–308

    Article  CAS  Google Scholar 

  10. Pérez-Pimienta JA, Icaza-Herrera JP, Méndoza-Pérez JA, González-Álvarez V, Méndez-Acosta HO, Arreola-Vargas J (2019) Mild reaction conditions induce high sugar yields during the pretreatment of agave tequilana bagasse with 1-ethyl-3-methylimidazolium acetate. Biores Technol 275:78–85

    Article  CAS  Google Scholar 

  11. Daems N, Sheng X, Vankelecom IF, Pescarmona PP (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2(12):4085–4110

    Article  CAS  Google Scholar 

  12. Sun F, Wang L, Peng Y, Gao J, Pi X, Qu Z, Zhao G, Qin Y (2018) Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials. Appl Surf Sci 436:486–494. https://doi.org/10.1016/j.apsusc.2017.12.067

    Article  CAS  Google Scholar 

  13. Guldi DM, Sgobba V (2011) Carbon nanostructures for solar energy conversion schemes. Chem Commun (Camb) 47(2):606–610. https://doi.org/10.1039/c0cc02411b

    Article  CAS  Google Scholar 

  14. Peter KT, Vargo JD, Rupasinghe TP, De Jesus A, Tivanski AV, Sander EA, Myung NV, Cwiertny DM (2016) Synthesis, optimization, and performance demonstration of electrospun carbon nanofiber–carbon nanotube composite sorbents for point-of-use water treatment. ACS Appl Mater Interfaces 8(18):11431–11440. https://doi.org/10.1021/acsami.6b01253

    Article  CAS  Google Scholar 

  15. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Academic Press, Cambridge

    Google Scholar 

  16. Misnon II, Zain NKM, Jose R (2018) Conversion of oil palm kernel shell biomass to activated carbon for supercapacitor electrode application. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-018-0196-y

    Article  Google Scholar 

  17. Ritter U, Tsierkezos NG, Prylutskyy YI, Matzui LY, Gubanov VO, Bilyi MM, Davydenko MO (2012) Structure–electrical resistivity relationship of n-doped multi-walled carbon nanotubes. J Mater Sci 47(5):2390–2395. https://doi.org/10.1007/s10853-011-6059-6

    Article  CAS  Google Scholar 

  18. Jana D, Sun C-L, Chen L-C, Chen K-H (2013) Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Prog Mater Sci 58(5):565–635

    Article  CAS  Google Scholar 

  19. Ombaka LM, Ndungu PG, Nyamori VO (2015) Tuning the nitrogen content and surface properties of nitrogen-doped carbon nanotubes synthesized using a nitrogen-containing ferrocenyl derivative and ethylbenzoate. J Mater Sci 50(3):1187–1200. https://doi.org/10.1007/s10853-014-8675-4

    Article  CAS  Google Scholar 

  20. Lin J, Shang Y, Lin X, Yang L, Yu A (2016) Study on nitrogen-doped carbon nanotubes for vanadium redox flow battery application. Int J Electrochem Sci 11(1):665–674

    CAS  Google Scholar 

  21. Wu M-S, Ceng Z-Z (2016) Bamboo-like nitrogen-doped carbon nanotubes formed by direct pyrolysis of prussian blue analogue as a counter electrode material for dye-sensitized solar cells. Electrochim Acta 191:895–901. https://doi.org/10.1016/j.electacta.2016.01.123

    Article  CAS  Google Scholar 

  22. Martin-Martinez M, Ribeiro RS, Machado BF, Serp P, Morales-Torres S, Silva AMT, Figueiredo JL, Faria JL, Gomes HT (2016) Role of nitrogen doping on the performance of carbon nanotube catalysts: a catalytic wet peroxide oxidation application. ChemCatChem 8(12):2068–2078. https://doi.org/10.1002/cctc.201600123

    Article  CAS  Google Scholar 

  23. Zhang L-M, Sui X-L, Zhao L, Zhang J-J, Gu D-M, Wang Z-B (2016) Nitrogen-doped carbon nanotubes for high-performance platinum-based catalysts in methanol oxidation reaction. Carbon 108:561–567. https://doi.org/10.1016/j.carbon.2016.07.059

    Article  CAS  Google Scholar 

  24. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758. https://doi.org/10.1166/jnn.2010.2939

    Article  CAS  Google Scholar 

  25. Hussain S, Amade R, Moreno H, Bertran E (2014) RF-PECVD growth and nitrogen plasma functionalization of CNTs on copper foil for electrochemical applications. Diam Relat Mater 49:55–61. https://doi.org/10.1016/j.diamond.2014.08.006

    Article  CAS  Google Scholar 

  26. Keru G, Ndungu PG, Nyamori VO (2013) Nitrogen-doped carbon nanotubes synthesised by pyrolysis of (4-{[(pyridine-4-yl)methylidene]amino}phenyl)ferrocene. J Nanomater 2013:1–7. https://doi.org/10.1155/2013/750318

    Article  CAS  Google Scholar 

  27. Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric. https://doi.org/10.1186/s40538-016-0070-8

    Article  Google Scholar 

  28. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303

    Article  CAS  Google Scholar 

  29. Fritsch C, Staebler A, Happel A, Cubero Márquez M, Aguiló-Aguayo I, Abadias M, Gallur M, Cigognini I, Montanari A, López M (2017) Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: a review. Sustainability 9(8):1492

    Article  CAS  Google Scholar 

  30. Goodell B, Xie X, Qian Y, Daniel G, Peterson M, Jellison J (2008) Carbon nanotubes produced from natural cellulosic materials. J Nanosci Nanotechnol 8(5):2472–2474

    Article  CAS  Google Scholar 

  31. Kang Z, Wang E, Mao B, Su Z, Chen L, Xu L (2005) Obtaining carbon nanotubes from grass. Nanotechnology 16(8):1192–1195

    Article  CAS  Google Scholar 

  32. Liu H, Ren M, Qu J, Feng Y, Song X, Zhang Q, Cong Q, Yuan X (2017) A cost-effective method for recycling carbon and metals in plants: synthesizing nanomaterials. Environ Sci Nano 4(2):461–469

    Article  CAS  Google Scholar 

  33. Bernd MGS, Bragança SR, Heck N, Filho LC (2017) Synthesis of carbon nanostructures by the pyrolysis of wood sawdust in a tubular reactor. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2016.11.003

    Article  Google Scholar 

  34. Alves JO, Tenório JAS, Zhuo C, Levendis YA (2012) Characterization of nanomaterials produced from sugarcane bagasse. J Mater Res Technol 1(1):31–34

    Article  CAS  Google Scholar 

  35. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1(3):356–361. https://doi.org/10.1002/aenm.201100019

    Article  CAS  Google Scholar 

  36. Zhu C, Akiyama T (2016) Cotton derived porous carbon via an mgo template method for high performance lithium ion battery anodes. Green Chem 18(7):2106–2114

    Article  CAS  Google Scholar 

  37. De S, Balu AM, Waal JC, van Luque R (2015) Biomass-derived porous carbon materials: synthesis and catalytic applications. ChemCatChem 7(11):1608–1629. https://doi.org/10.1002/cctc.201500081

    Article  CAS  Google Scholar 

  38. Hofsetz K, Silva MA (2012) Brazilian sugarcane bagasse: energy and non-energy consumption. Biomass Bioenerg 46:564–573

    Article  Google Scholar 

  39. Melati RB, Shimizu FL, Oliveira G, Pagnocca FC, de Souza W, Sant’Anna C, Brienzo M (2018) Key factors affecting the recalcitrance and conversion process of biomass. BioEnergy Res. https://doi.org/10.1007/s12155-018-9941-0

    Article  Google Scholar 

  40. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728. https://doi.org/10.1021/cr9001947

    Article  CAS  Google Scholar 

  41. Equihua-Sánchez M, Barahona-Pérez LF (2019) Physical and chemical characterization of agave tequilana bagasse pretreated with the ionic liquid 1-ethyl-3-methylimidazolium acetate. Waste Biomass Valoriz 10(5):1285–1294

    Article  CAS  Google Scholar 

  42. Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41(4):1519–1537. https://doi.org/10.1039/c2cs15311d

    Article  CAS  Google Scholar 

  43. Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 18(4):275–297

    Article  CAS  Google Scholar 

  44. Ozokwelu D, Zhang S, Okafor O, Cheng W, Litombe N (2017) Novel catalytic and separation processes based on ionic liquids. Elsevier, Amsterdam

    Google Scholar 

  45. Morales-delaRosa S, Campos-Martin JM, Fierro JLG (2012) High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids. Chem Eng J 181–182:538–541. https://doi.org/10.1016/j.cej.2011.11.061

    Article  CAS  Google Scholar 

  46. Mugadza K, Nyamori VO, Mola GT, Simoyi RH, Ndungu PG (2017) Low temperature synthesis of multiwalled carbon nanotubes and incorporation into an organic solar cell. J Exp Nanosci 12(1):363–383. https://doi.org/10.1080/17458080.2017.1357842

    Article  CAS  Google Scholar 

  47. Ombaka LM, Ndungu PG, Nyamori VO (2014) Tuning the nitrogen content and surface properties of nitrogen-doped carbon nanotubes synthesized using a nitrogen-containing ferrocenyl derivative and ethylbenzoate. J Mater Sci 50(3):1187–1200. https://doi.org/10.1007/s10853-014-8675-4

    Article  CAS  Google Scholar 

  48. Conroy D, Moisala A, Cardoso S, Windle A, Davidson J (2010) Carbon nanotube reactor: ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up. Chem Eng Sci 65(10):2965–2977. https://doi.org/10.1016/j.ces.2010.01.019

    Article  CAS  Google Scholar 

  49. Castro C, Pinault M, Porterat D, Reynaud C, Mayne-L’Hermite M (2013) The role of hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin and densely packed vertically aligned carbon nanotubes. Carbon 61:585–594. https://doi.org/10.1016/j.carbon.2013.05.040

    Article  CAS  Google Scholar 

  50. Xu Y, Ma Y, Liu Y, Feng S, He D, Haghi-Ashtiani P, Dichiara A, Zimmer L, Bai J (2018) Evolution of nanoparticles in the gas phase during the floating chemical vapor deposition synthesis of carbon nanotubes. J Phys Chem C 122(11):6437–6446. https://doi.org/10.1021/acs.jpcc.8b00451

    Article  CAS  Google Scholar 

  51. Aqel A, Abou El-Nour KMM, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (i) structure, synthesis and characterization. Arab J Chem 5(1):1–23. https://doi.org/10.1016/j.arabjc.2010.08.022

    Article  CAS  Google Scholar 

  52. Mugadza K, Ndungu PG, Stark A, Nyamori VO (2019) Ionic liquids and cellulose: innovative feedstock for synthesis of carbon nanostructured material. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2019.06.012

    Article  Google Scholar 

  53. Mori S, Suzuki M (2008) Effect of oxygen and hydrogen addition on the low-temperature synthesis of carbon nanofibers using a low-temperature co/ar dc plasma. Diam Relat Mater 17(6):999–1002. https://doi.org/10.1016/j.diamond.2008.02.035

    Article  CAS  Google Scholar 

  54. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118. https://doi.org/10.1016/j.mseb.2005.02.046

    Article  CAS  Google Scholar 

  55. Lee CJ, Lyu SC, Kim H-W, Lee JH, Cho KI (2002) Synthesis of bamboo-shaped carbon–nitrogen nanotubes using c2h2–nh3–fe(co)5 system. Chem Phys Lett 359(1–2):115–120. https://doi.org/10.1016/S0009-2614(02)00655-3

    Article  CAS  Google Scholar 

  56. Hou P-X, Liu C, Cheng H-M (2008) Purification of carbon nanotubes. Carbon 46(15):2003–2025

    Article  CAS  Google Scholar 

  57. Hsieh Y-C, Chou Y-C, Lin C-P, Hsieh T-F, Shu C-M (2010) Thermal analysis of multi-walled carbon nanotubes by kissinger’s corrected kinetic equation. Aerosol Air Qual Res 10(3):212–218

    Article  CAS  Google Scholar 

  58. Mahajan A, Kingon A, Kukovecz Á, Konya Z, Vilarinho PM (2013) Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres. Mater Lett 90:165–168. https://doi.org/10.1016/j.matlet.2012.08.120

    Article  CAS  Google Scholar 

  59. Nxumalo EN, Chabalala VP, Nyamori VO, Witcomb MJ, Coville NJ (2010) Influence of methylimidazole isomers on ferrocene-catalysed nitrogen doped carbon nanotube synthesis. J Organomet Chem 695(10–11):1451–1457

    Article  CAS  Google Scholar 

  60. Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2(6):615–619

    Article  CAS  Google Scholar 

  61. Santangelo S, Lanza M, Milone C (2013) Evaluation of the overall crystalline quality of amorphous carbon containing multiwalled nanotubes. The Journal of Physical Chemistry C 117(9):4815–4823. https://doi.org/10.1021/jp310014w

    Article  CAS  Google Scholar 

  62. Jorio A, Pimenta MA, Souza Filho AG, Saito R, Dresselhaus G, Dresselhaus MS (2003) Characterizing carbon nanotube samples with resonance raman scattering. New J Phys 5:1–17. https://doi.org/10.1088/1367-2630/5/1/139

    Article  CAS  Google Scholar 

  63. Costa S, Borowiak-Palen E, Kruszynska M, Bachmatiuk A, Kalenczuk RJ (2008) Characterization of carbon nanotubes by raman spectroscopy. Mater Sci-Poland 26(2):433–441

    CAS  Google Scholar 

  64. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B. https://doi.org/10.1103/physrevb.64.075414

    Article  Google Scholar 

  65. Liu Y, Pan C, Wang J (2004) Raman spectra of carbon nanotubes and nanofibers prepared by ethanol flames. J Mater Sci 39(3):1091–1094. https://doi.org/10.1023/b:jmsc.0000012952.20840.09

    Article  CAS  Google Scholar 

  66. Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396(3):1003–1014. https://doi.org/10.1007/s00216-009-3332-5

    Article  CAS  Google Scholar 

  67. Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38(6):728–736

    Article  CAS  Google Scholar 

  68. Hernadi K, Fonseca A, Nagy JB, Siska A, Kiricsi I (2000) Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Appl Catal A 199(2):245–255

    Article  CAS  Google Scholar 

  69. Cao A, Xu C, Liang J, Wu D, Wei B (2001) X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem Phys Lett 344(1):13–17. https://doi.org/10.1016/S0009-2614(01)00671-6

    Article  CAS  Google Scholar 

  70. Lambin P, Loiseau A, Culot C, Biro L (2002) Structure of carbon nanotubes probed by local and global probes. Carbon 40(10):1635–1648

    Article  CAS  Google Scholar 

  71. Reznik D, Olk CH, Neumann DA, Copley JRD (1995) X-ray powder diffraction from carbon nanotubes and nanoparticles. Phys Rev B Condens Matter 52(1):116–124. https://doi.org/10.1103/physrevb.52.116

    Article  CAS  Google Scholar 

  72. Khani H, Moradi O (2013) Influence of surface oxidation on the morphological and crystallographic structure of multi-walled carbon nanotubes via different oxidants. J Nanostruct Chem 3(1):73–81

    Article  Google Scholar 

  73. Titus E, Ali N, Cabral G, Gracio J, Ramesh Babu P, Jackson MJ (2006) Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis, fourier transform infrared, and raman spectroscopy. J Mater Eng Perform 15(2):182–186. https://doi.org/10.1361/105994906x95841

    Article  CAS  Google Scholar 

  74. Steven E, Saleh WR, Lebedev V, Acquah SF, Laukhin V, Alamo RG, Brooks JS (2013) Carbon nanotubes on a spider silk scaffold. Nat Commun 4:2435

    Article  CAS  Google Scholar 

  75. Mombeshora ET, Ndungu PG, Jarvis AL, Nyamori VO (2017) Oxygen-modified multiwalled carbon nanotubes: physicochemical properties and capacitor functionality. Int J Energy Res 41(8):1182–1201

    Article  CAS  Google Scholar 

  76. He C, Li L, Zhang T, Sun F, Wang C, Lin Y (2016) Nitrogen-doped amorphous carbon with effective electrocatalytic activity toward oxygen reduction reaction. Mater Res Bull 84:118–123. https://doi.org/10.1016/j.materresbull.2016.07.025

    Article  CAS  Google Scholar 

  77. Wang Y-G, Li H-Q, Xia Y-Y (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18(19):2619–2623. https://doi.org/10.1002/adma.200600445

    Article  CAS  Google Scholar 

  78. Wickramaratne NP, Xu J, Wang M, Zhu L, Dai L, Jaroniec M (2014) Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and co2 adsorption. Chem Mater 26(9):2820–2828. https://doi.org/10.1021/cm5001895

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Sugar Milling Research Institute (SMRI) and the National Research Foundation-The World Academy of Science (NRF-TWAS) for the supply of the feedstock and funding, respectively, and Dr. ET Mombeshora for proofreading the manuscript. This work is based on research supported in part (Grant Number: 116610, to KM, Grant Number: 103979, to VON and Grant Number: 115465, to AS) by the National Research Foundation of South Africa. Also the Eskom Tertiary Education Support Programme (TESP) funded this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent O. Nyamori.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mugadza, K., Ndungu, P.G., Stark, A. et al. Conversion of residue biomass into value added carbon materials: utilisation of sugarcane bagasse and ionic liquids. J Mater Sci 54, 12476–12487 (2019). https://doi.org/10.1007/s10853-019-03800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03800-5

Navigation