Skip to main content
Log in

Graphene oxide foam fabricated with surfactant foaming method for efficient solar vapor generation

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solar vapor generation is emerging as a reliable way to directly transfer solar illumination to vapor evaporation. Graphene-based porous photothermal materials are considered as promising absorbers in this system owing to the broadband absorption and excellent photothermal properties. In this paper, we construct a three-dimensional (3D) graphene oxide foam with a convenient surfactant foaming method for solar vapor generation. Abundant porous channels and good hydrophilicity are simultaneously achieved by means of the self-assembly and hydrophilic characteristics of the foaming agents. Detailed light absorption and vapor generation tests reveal that the foam monolith possesses an absorption rate at ~ 89% and a considerable solar vapor efficiency of ~ 81% under a solar intensity of 1 kW m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Javadi FS, Saidur R, Kamalisarvestani M (2013) Investigating performance improvement of solar collectors by using nanofluids. Renew Sust Energ Rev 28:232–245. https://doi.org/10.1016/j.rser.2013.06.053

    Article  CAS  Google Scholar 

  2. Zhou X, Yang J (2008) Temperature field of solar collector and application potential of solar chimney power systems in china. J Energy Inst 81(1):25–30. https://doi.org/10.1179/174602208x269364

    Article  CAS  Google Scholar 

  3. Malali PD, Chaturvedi SK, Abdel-Salam T (2017) Performance optimization of a regenerative brayton heat engine coupled with a parabolic dish solar collector. Energy Convers Manag 143:85–95. https://doi.org/10.1016/j.enconman.2017.03.067

    Article  Google Scholar 

  4. Pei G, Li J, Ji J (2010) Analysis of low temperature solar thermal electric generation using regenerative organic rankine cycle. Appl Therm Eng 30(8–9):998–1004. https://doi.org/10.1016/j.applthermaleng.2010.01.011

    Article  CAS  Google Scholar 

  5. Jing L, Gang P, Jie J (2010) Optimization of low temperature solar thermal electric generation with organic rankine cycle in different areas. Appl Energ 87(11):3355–3365. https://doi.org/10.1016/j.apenergy.2010.05.013

    Article  CAS  Google Scholar 

  6. Liu S, Liang Z, Gao F, Luo S, Lu G (2010) In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. J Mater Sci-Mater M 21(2):665–674. https://doi.org/10.1007/s10856-009-3895-x

    Article  CAS  Google Scholar 

  7. Carrasco E, Del Rosal B, Sanz-Rodríguez F, Fuente AJ, Gonzalez PH, Rocha U, Kumar KU, Jacinto C, Daniel J (2015) Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv Funct Mater 25(4):615–626. https://doi.org/10.1002/adfm.201403653

    Article  CAS  Google Scholar 

  8. Wang H, Mukherjee S, Yi J, Banerjee P, Chen Q, Zhou S (2017) Biocompatible chitosan-carbon dots hybrid nanogels for NIR-imaging-guided synergistic photothermal/chemo-therapy. Acs Appl Mater Inter 9(22):18639–18649. https://doi.org/10.1021/acsami.7b06062

    Article  CAS  Google Scholar 

  9. Lei S, Yurong H, Xinzhi W, Yanwei H (2018) Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanoparticles. Energy Convers Manag 171:272–278. https://doi.org/10.1016/j.enconman.2018.05.106

    Article  CAS  Google Scholar 

  10. Jin H, Lin G, Bai L, Zeiny A, Wen D (2016) Steam generation in a nanoparticle-based solar receiver. Nano Energy 28:397–406. https://doi.org/10.1016/j.nanoen.2016.08.011

    Article  CAS  Google Scholar 

  11. Ghasemi H, Ni G, Marconnet AM, Loomis J, Yerci S, Miljkovic N, Chen G (2014) Solar steam generation by heat localization. Nat Commun 5:4449. https://doi.org/10.1038/ncomms5449

    Article  CAS  Google Scholar 

  12. Zhao F, Zhou X, Shi Y, Qian X, Alexander M, Zhao X, Mendez S, Yang R, Qu L, Yu G (2018) Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotechnol 13(6):489–495. https://doi.org/10.1038/s41565-018-0097-z

    Article  CAS  Google Scholar 

  13. Hu X, Xu W, Zhou L, Tan Y, Wang Y, Zhu S, Zhu J (2017) Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv Mater 29(5):1604031. https://doi.org/10.1002/adma.201604031

    Article  CAS  Google Scholar 

  14. Xu N, Hu X, Xu W, Li X, Zhou L, Zhu S, Zhu J (2017) Mushrooms as efficient solar steam-generation devices. Adv Mater 29(28):1606762. https://doi.org/10.1002/adma.201606762

    Article  CAS  Google Scholar 

  15. Xue G, Liu K, Chen Q, Yang P, Li J, Ding T, Duan J, Qi B, Zhou J (2017) Robust and low-cost flame-treated wood for high-performance solar steam generation. Acs Appl Mater Inter 9(17):15052–15057. https://doi.org/10.1021/acsami.7b01992

    Article  CAS  Google Scholar 

  16. Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J (2016) Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv 2(4):e1501227. https://doi.org/10.1126/sciadv.1501227

    Article  CAS  Google Scholar 

  17. Sajadi SM, Farokhnia N, Irajizad P, Hasnain M, Ghasemi H (2016) Flexible artificially-networked structure for ambient/high pressure solar steam generation. J Mater Chem A 4(13):4700–4705. https://doi.org/10.1039/C6TA01205A

    Article  CAS  Google Scholar 

  18. Ito Y, Tanabe Y, Han J, Fujita T, Tanigaki K, Chen M (2015) Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv Mater 27(29):4302–4307. https://doi.org/10.1002/adma.201501832

    Article  CAS  Google Scholar 

  19. Hou B, Kong D, Qian J, Yu Y, Cui Z, Liu X, Wang J, Mei T, Li J, Wang X (2018) Flexible and portable graphene on carbon cloth as a power generator for electricity generation. Carbon 140:488–493. https://doi.org/10.1016/j.carbon.2018.09.005

    Article  CAS  Google Scholar 

  20. Hou B, Cui Z, Zhu X, Liu X, Wang G, Wang J, Mei T, Li J, Wang X (2019) Functionalized carbon materials for efficient solar steam and electricity generation. Mater Chem Phys 222:159–164. https://doi.org/10.1016/j.matchemphys.2018.10.006

    Article  CAS  Google Scholar 

  21. Zhang L, Tang B, Wu J, Li R, Wang P (2015) Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv Mater 27(33):4889–4894. https://doi.org/10.1002/adma.201502362

    Article  CAS  Google Scholar 

  22. Jiang Q, Tian L, Liu KK, Tadepalli S, Raliya R, Biswas P, Naik RR, Singamaneni S (2016) Bilayered biofoam for highly efficient solar steam generation. Adv Mater 28(42):9400–9407. https://doi.org/10.1002/adma.201601819

    Article  CAS  Google Scholar 

  23. Wang Y, Zhang L, Wang P (2016) Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustain Chem Eng 4(3):1223–1230. https://doi.org/10.1021/acssuschemeng.5b01274

    Article  CAS  Google Scholar 

  24. Ren H, Tang M, Guan B, Wang K, Yang J, Wang F, Wang M, Shan J, Chen Z, Wei D, Peng H, Liu Z (2017) Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv Mater 29(38):1702590. https://doi.org/10.1002/adma.201702590

    Article  CAS  Google Scholar 

  25. Chen Y, Zhu Y, Feng B, Weng J, Wang J, Lu X (2011) Preparation and characterization of a novel porous titanium scaffold with 3d hierarchical porous structures. J Mater Sci-Mater M 22(4):839–844. https://doi.org/10.1007/s10856-011-4280-0

    Article  CAS  Google Scholar 

  26. Du X, Zhao L, He X, Wang X, Qu W, Chen H, Chen H, Wang J, Lei Z (2016) A novel method based on ultrastable foam and improved gelcasting for fabricating porous mullite ceramics with thermal insulation–mechanical property trade-off. J Porous Mater 23(2):381–388. https://doi.org/10.1007/s10934-015-0091-x

    Article  CAS  Google Scholar 

  27. Xin Z, Li W, Fang W, He X, Zhao L, Chen H, Zhang W, Sun Z (2017) Enhanced specific surface area by hierarchical porous graphene aerogel/carbon foam for supercapacitor. J Nanopart Res 19(12):386. https://doi.org/10.1007/s11051-017-4080-7

    Article  CAS  Google Scholar 

  28. Du X, He X, Zhao L, Chen H, Li W, Fang W, Zhang W, Wang J (2016) TiO2 hierarchical porous film constructed by ultrastable foams as photoanode for quantum dot-sensitized solar cells. J Power Sources 332:1–7. https://doi.org/10.1016/j.jpowsour.2016.09.103

    Article  CAS  Google Scholar 

  29. Hsieh AG, Korkut S, Punckt C, Aksay IA (2013) Dispersion stability of functionalized graphene in aqueous sodium dodecyl sulfate solutions. Langmuir 29(48):14831–14838. https://doi.org/10.1021/la4035326

    Article  CAS  Google Scholar 

  30. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  31. Sham AYW, Notley SM (2016) Foam stabilisation using surfactant exfoliated graphene. J Colloid Interfaces Sci 469:196–204. https://doi.org/10.1016/j.jcis.2016.02.015

    Article  CAS  Google Scholar 

  32. Hao Y, Wang Y, Wang L, Ni Z, Wang Z, Wang R, Koo CK, Shen Z, Thong JTL (2010) Probing layer number and stacking order of few-layer graphene by raman spectroscopy. Small 6(2):195–200. https://doi.org/10.1002/smll.200901173

    Article  CAS  Google Scholar 

  33. Chen WF, Yan LF, Bangal P (2010) Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J Phy Chem C 114(47):19885–19890. https://doi.org/10.1021/jp107131v

    Article  CAS  Google Scholar 

  34. Wei G, Miao YE, Zhang C, Yang Z, Liu Z, Tjiu WW, Liu T (2013) Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification. Acs Appl Mater Inter 5(15):7584–7591. https://doi.org/10.1021/am401887g

    Article  CAS  Google Scholar 

  35. Arslan Y, Kadir P, Yildiz A (2004) Electropolymerization of self-doped polythiophene in acetonitrile containing FSO3H. Synthetic Met 142(1–3):0–12. https://doi.org/10.1016/j.synthmet.2003.07.001

    Article  CAS  Google Scholar 

  36. Liu X, He J (2009) Superhydrophilic and antireflective properties of silica nanoparticle coatings fabricated via layer-by-layer assembly and postcalcination. J Phys Chem C 113(1):148–152. https://doi.org/10.1021/jp808324c

    Article  CAS  Google Scholar 

  37. Yu S, Zhang Y, Duan H, Liu Y, Quan X, Tao P, Shang W, Wu J, Song C, Deng T (2015) The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci Rep-UK 5:13600. https://doi.org/10.1038/srep13600

    Article  Google Scholar 

  38. Bernadet S, Tavernier E, Ta DM, Vallée RAL, Ravaine S, Fécant A, Backov R (2019) Bulk photodriven CO2 conversion through TiO2@Si(HIPE) monolithic macrocellular foams. Adv Funct Mater 29(9):1807767. https://doi.org/10.1002/adfm.201807767

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (61604110, 51802234), Natural Science Foundation of Hubei Provincial China (2018CFC796, 2017CFC829, 2017CFB291), Department of Education Science Research Program of Hubei Province (Q20161110) and Open Foundation of Key Laboratory of Green Chemical Process of Wuhan Institute of Technology (NRGCT201503), Training Programs of Innovation and Entrepreneurship for Undergraduates of Hubei Province (201510488022), Scientific Research Program of Hubei Provincial Department of Education (B2017014, D20171505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, W., Zhao, L., Chen, H. et al. Graphene oxide foam fabricated with surfactant foaming method for efficient solar vapor generation. J Mater Sci 54, 12782–12793 (2019). https://doi.org/10.1007/s10853-019-03794-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03794-0

Navigation