Skip to main content
Log in

Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbonyl iron powder (CIP) coated with a layer of epoxy (EP) shell, denoted as core–shell CIP@EP composites, were designed and prepared via in situ polymerization. The CIP@EP composites containing 4.5–6.8 wt% EP were systematically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, scanning and transmission electron microscopy, and vector network analyzer. The results indicated that CIP@EP composites with 9–254 nm EP shell thickness were successfully prepared through an efficient in situ polymerization method. The particle diameter of core CIP particles was 0.49–4.24 µm. The microwave absorption properties of the microspheres were then experimentally measured, and the CIP@EP composites exhibited a maximum reflection loss value of − 66.2 dB at 7.1 GHz at 2.0 mm absorber thickness. The effective absorbing bandwidth below − 10 dB was 8.0 GHz (from 10.0 to 18.0 GHz). The presence of the EP shell not only enhanced the microwave absorption performance of CIP@EP composites but also improved the overall chemical stability of CIP particles. The as-prepared CIP@EP composites may be a promising candidate for electromagnetic wave absorption applications, and the core–shell structure design can be extended to other microwave absorption materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yu L, Zhu Y, Fu Y (2018) Waxberry-like carbon@polyaniline microspheres with high-performance microwave absorption. Appl Surf Sci 427:451–457

    CAS  Google Scholar 

  2. Chen N, Jiang J, Xu C, Yan S, Zhen L (2018) Rational construction of uniform CoNi-based core–shell microspheres with tunable electromagnetic wave absorption properties. Sci Rep 8:3196

    Google Scholar 

  3. Liu H, Li Y, Yuan M, Sun G, Li H, Ma S, Liao Q, Zhang Y (2018) In situ preparation of cobalt nanoparticles decorated in N-doped carbon nanofibers as excellent electromagnetic wave absorbers. ACS Appl Mater Interfaces 10:22591–22601

    CAS  Google Scholar 

  4. Chen X, Qi S (2017) Preparation and microwave absorbing properties of polyaniline/NiFe2O4/graphite nanosheet composites via sol–gel reaction and in situ polymerization. J Sol–Gel Sci Technol 81:824–830

    CAS  Google Scholar 

  5. Liu P, Ng VMH, Yao Z, Zhou J, Lei Y, Yang Z, Lv H, Kong LB (2017) Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl Mater Interfaces 9:16404–16416

    CAS  Google Scholar 

  6. Liu Z, Xing H, Liu Y, Wang H, Jia H, Ji X (2018) Hydrothermally synthesized Zn ferrite/multi-walled carbon nanotubes composite with enhanced electromagnetic-wave absorption performance. J Alloys Compd 731:745–752

    CAS  Google Scholar 

  7. Xiang J, Hou Z, Zhang X, Gong L, Wu Z, Mi J (2018) Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers. J Alloys Compd 737:412–420

    CAS  Google Scholar 

  8. Wang Y, Zhu H, Chen Y, Wu X, Zhang W, Luo C, Li J (2017) Design of hollow ZnFe2O4 microspheres@graphene decorated with TiO2 nanosheets as a high-performance low frequency absorber. Mater Chem Phys 202:184–189

    CAS  Google Scholar 

  9. Jafarian M, Afghahi SSS, Atassi Y, Salehi M (2018) Enhanced microwave absorption characteristics of nanocomposite based on hollow carbonyl iron microspheres and polyaniline decorated with MWCNTs. J Magn Magn Mater 462:153–159

    CAS  Google Scholar 

  10. Sonehara M, Yamaguchi S, Miyajima Y, Sato T, Inomata T, Ono Y (2017) Characterization of UHF band LC filter with RF spiral inductor using carbonyl-iron powder/epoxy composite magnetic and chip capacitor. IEEE Trans Magn 53:1–5

    Google Scholar 

  11. Li L, Gao Z, Li A, Yi J, Ge Y (2018) Fabrication of carbonyl iron powder/SiO2-reduced iron powder/SiO2 soft magnetic composites with a high resistivity and low core loss. J Magn Magn Mater 464:161–167

    CAS  Google Scholar 

  12. Schroedner M, Pflug G (2018) Magnetomechanical properties of composites and fibers made from thermoplastic elastomers (TPE) and carbonyl iron powder (CIP). J Magn Magn Mater 454:258–263

    CAS  Google Scholar 

  13. Lee NR, Bikoytseva AA, Cortes-Clerget M, Gallou F, Lipshutz BH (2017) Carbonyl iron powder: a reagent for nitro group reductions under aqueous micellar catalysis conditions. Org Lett 19:6518–6521

    CAS  Google Scholar 

  14. Gao Y, Gao X, Li J, Guo S (2018) Microwave absorbing and mechanical properties of alternating multilayer carbonyl iron powder-poly(vinyl chloride) composites. J. Appl. Polym. Sci. 135:45846

    Google Scholar 

  15. Liu Y, Li L, Wang Y, Li C (2017) Corrosion resistance and wave absorbing property of carbonyl iron powder coating with alumina by atomic layer deposition. J Inorg Mater 32:751–757

    Google Scholar 

  16. Ji P, Xie G, Xie N, Li J, Chen J, Xu R, Chen J (2018) Fabrication and microwave absorption properties of the flaky carbonyl iron/FeSiAl composite in S-band. J Mater Sci Mater Electron 29:4711–4716

    CAS  Google Scholar 

  17. Li W, Le C, Lv J, Huang W, Qiao L, Zheng J, Ying Y, Yu J, Che S (2017) Electromagnetic and oxidation resistance properties of core-shell structure flaked carbonyl iron powder@SiO2 nanocomposite. Phys Status Solidi A 214:1600747

    Google Scholar 

  18. Ulu A, Ozcan I, Koytepe S, Ates B (2018) Design of epoxy-functionalized Fe3O4@MCM-41 core-shell nanoparticles for enzyme immobilization. Int J Biol Macromol 115:1122–1130

    CAS  Google Scholar 

  19. Neisiany RE, Lee JKY, Khorasani SN, Bagheri R, Ramakrishna S (2018) Facile strategy toward fabrication of highly responsive self-healing carbon/epoxy composites via incorporation of healing agents encapsulated in poly(methylmethacrylate) nanofiber shell. J Ind Eng Chem 59:456–466

    Google Scholar 

  20. Kini UA, Nayak SY, Shenoy Heckadka S, Thomas LG, Adarsh SP, Gupta S (2018) Borassus and Tamarind fruit fibers as reinforcement in cashew nut shell liquid-epoxy composites. J Nat Fibres 15:204–218

    CAS  Google Scholar 

  21. Wang J, Xue Z, Li Y, Li G, Wang Y, Zhong W, Yang X (2018) Synergistically effects of copolymer and core-shell particles for toughening epoxy. Polymer 140:39–46

    CAS  Google Scholar 

  22. Okamoto T, Yamazaki Y (2018) Observation of aqueous resin emulsion with transmission electron microscope: fixation of core-shell type epoxy emulsion particles with gelatin. Kobunshi Ronbunshu 75:290–292

    CAS  Google Scholar 

  23. Zuo Y, Yao Z, Zhou J, Zhang X, Ning Y (2018) Hierarchical structures based on Li0.35Zn0.3Fe2.35O4/polyaniline nanocomposites: synthesis and excellent microwave absorption properties. J Mater Sci Mater Electron 29:922–926

    CAS  Google Scholar 

  24. Tang S, Qian L, Qiu Y, Dong Y (2018) High-performance flame retardant epoxy resin based on a bi-group molecule containing phosphaphenanthrene and borate groups. Polym Degrad Stab 153:210–219

    CAS  Google Scholar 

  25. Konuray O, Areny N, Morancho JM, Fernandez-Francos X, Serra A, Ramis X (2018) Preparation and characterization of dual-curable off-stoichiometric amine-epoxy thermosets with latent reactivity. Polymer 146:42–52

    CAS  Google Scholar 

  26. Javaid A, Afzal A (2018) Carbon fiber reinforced modified bisphenol-a diglycidylether epoxy composites for flame retardant applications. Mater Res Express 5:065703

    Google Scholar 

  27. Johnson C, Albrecht M (2017) Triazolylidene iron(II) piano-stool complexes: synthesis and catalytic hydrosilylation of carbonyl compounds. Organometallics 36:2902–2913

    CAS  Google Scholar 

  28. Hajalilou A, Mazlan SA, Shilan ST, Abouzari-Lotf E (2017) Enhanced magnetorheology of soft magnetic carbonyl iron suspension with binary mixture of Ni–Zn ferrite and Fe3O4 nanoparticle additive. Colloid Polym Sci 295:1499–1510

    CAS  Google Scholar 

  29. Liu Y, Su X, Luo F, Xu J, Wang J, He X, Qu Y (2018) Enhanced electromagnetic and microwave absorption properties of carbonyl iron/Ti3SiC2/epoxy resin coating. J Mater Sci Mater Electron 29:2500–2508

    CAS  Google Scholar 

  30. Yan YQ, Cai HP, Liao ZQ, Xiao HB (2018) microwave absorption properties of absorber based on polyaniline coated porous carbonyl iron powder and graphene sheets/epdxy composites. Dig J Nanomater Biostruct 13:107–114

    Google Scholar 

  31. Pourabdollahi H, Zarei AR (2017) Hydrothermal synthesis of carbonyl iron-carbon nanocomposite: characterization and electromagnetic performance. Results Phys 7:1978–1986

    Google Scholar 

  32. Dan S, Gu H, Tan J, Zhang B, Zhang Q (2018) Transparent epoxy/TiO2 optical hybrid films with tunable refractive index prepared via a simple and efficient way. Prog Org Coat 120:252–259

    CAS  Google Scholar 

  33. Lacombre CV, Bouvet G, Cohendoz S, Trinh D, Feaugas X, Touzain S, Mallarino S (2018) Influence of internal stresses on the physicochemical and mechanical properties evolution of pigmented epoxy systems during hygrothermal ageing. Surf Coat Technol 341:86–94

    Google Scholar 

  34. Olad A, Shakoori S (2018) Electromagnetic interference attenuation and shielding effect of quaternary Epoxy-PPy/Fe3O4-ZnO nanocomposite as a broad band microwave-absorber. J Magn Magn Mater 458:335–345

    CAS  Google Scholar 

  35. Yu M, Qi S, Fu J, Zhu M, Chen D (2017) Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Compos Sci Technol 139:36–46

    CAS  Google Scholar 

  36. Weng X, Li B, Zhang Y, Lv X, Gu G (2017) Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. J Alloys Compd 695:508–519

    CAS  Google Scholar 

  37. He Z, Qi S, Zhong X, Ma H, Wang P, Qiu H (2015) Preparation and microwave-absorbing properties of silver-coated strontium ferrite with polyaniline via in situ polymerization. J Alloys Compd 621:194–200

    CAS  Google Scholar 

  38. Hajalilou A, Kianvash A, Shameli K, Lavvafi H (2017) Carbonyl iron based magnetorheological effects with silver nanoparticles via green-assisted coating. Appl Phys Lett 110:261902

    Google Scholar 

  39. Sugimura K, Miyajima Y, Sonehara M, Sato T, Hayashi F, Zettsu N, Teshima K, Mizusaki H (2016) Formation of high electrical-resistivity thin surface layer on carbonyl-iron powder (CIP) and thermal stability of nanocrystalline structure and vortex magnetic structure of CIP. AIP Adv 6:055932

    Google Scholar 

  40. Wang A, Wang W, Long C, Li W, Guan J, Gu H, Xu G (2014) Facile preparation, formation mechanism and microwave absorption properties of porous carbonyl iron flakes. J Mater Chem C 2:3769–3776

    CAS  Google Scholar 

  41. Chuah WH, Zhang WL, Choi HJ, Seo Y (2015) Magnetorheology of core–shell structured carbonyl iron/polystyrene foam microparticles suspension with enhanced stability. Macromolecules 48:7311–7319

    CAS  Google Scholar 

  42. Yan H, Song X, Wang Y (2018) Study on wave absorption properties of carbonyl iron and SiO2 coated carbonyl iron particles. AIP Adv 8:065322

    Google Scholar 

  43. Gandhi N, Singh K, Ohlan A, Singh DP, Dhawan SK (2011) Thermal, dielectric and microwave absorption properties of polyaniline-CoFe2O4 nanocomposites. Compos Sci Technol 71:1754–1760

    CAS  Google Scholar 

  44. Zuo Y, Yao Z, Lin H, Zhou J, Liu P, Chen W, Shen C (2018) Coralliform Li0.35Zn0.3Fe2.35O4/polyaniline nanocomposites: facile synthesis and enhanced microwave absorption properties. J Alloys Compd 746:496–502

    CAS  Google Scholar 

  45. Bora PJ, Porwal M, Vinoy KJ, Ramamurthy PC, Madras G (2016) Influence of MnO2 decorated Fe nano cauliflowers on microwave absorption and impedance matching of polyvinylbutyral (PVB) matrix. Mater Res Express 3:095003

    Google Scholar 

  46. He L, Zhao Y, Xing L, Liu P, Wang Z, Zhang Y, Wang Y, Du Y (2018) Preparation of reduced graphene oxide coated flaky carbonyl iron composites and their excellent microwave absorption properties. RSC Adv 8:2971–2977

    CAS  Google Scholar 

  47. Jian X, Wu B, Wei Y, Dou SX, Wang X, He W, Mahmood N (2016) Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl Mater Interfaces 8:6101–6109

    CAS  Google Scholar 

  48. Ramteke SP, Baig MI, Shkir M, Kalainathan S, Shirsat MD, Muley GG, Anis M (2018) Novel report on SHG efficiency, Z-scan, laser damage threshold, photoluminescence, dielectric and surface microscopic studies of hybrid inorganic ammonium zinc sulphate hydrate single crystal. Opt Laser Technol 104:83–89

    CAS  Google Scholar 

  49. Yang H, Ye T, Lin Y, Liu M (2015) Exchange coupling behavior and microwave absorbing property of the hard/soft (BaFe12O19/Y3Fe5O12) ferrites based on polyaniline. Synth Met 210:245–250

    CAS  Google Scholar 

  50. Elahi A, Shakoor A, Irfan M, Niaz NA, Mahmood K, Awan MS (2016) Effect of loading ZnNiCrFe2O4 nanoparticles on structural and microwave absorption properties of polyaniline nanocomposites. J Mater Sci Mater Electron 27:9489–9495

    CAS  Google Scholar 

  51. Lv H, Guo Y, Zhao Y, Zhang H, Zhang B, Ji G, Xu ZJ (2016) Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon 110:130–137

    CAS  Google Scholar 

  52. Chen C, Liang W, Nien Y, Liu H, Yang R (2017) Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites. Mater Res Bull 96:81–85

    CAS  Google Scholar 

  53. Gao Y, Gao X, Li J, Guo S (2018) Improved microwave absorbing property provided by the filler’s alternating lamellar distribution of carbon nanotube/carbonyl iron/poly (vinyl chloride) composites. Compos Sci Technol 158:175–185

    CAS  Google Scholar 

  54. Rezazadeh N, Kianvash A, Palmeh P (2018) Microwave absorption properties of double-layer nanocomposites based on polypyrrole/natural rubber. J Appl Polym Sci 135:46565

    Google Scholar 

  55. Wang J, Or SW, Tan J (2018) Enhanced microwave electromagnetic properties of core/shell/shell-structured Ni/SiO2/polyaniline hexagonal nanoflake composites with preferred magnetization and polarization orientations. Mater Des 153:190–202

    CAS  Google Scholar 

  56. Lv H, Zhang H, Zhao J, Ji G, Du Y (2016) Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res 9:1813–1822

    CAS  Google Scholar 

  57. Singh SK, Akhtar MJ, Kar KK (2018) Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl Mater Interfaces 10:24816–24828

    CAS  Google Scholar 

  58. Lv H, Ji G, Zhang H, Li M, Zuo Z, Zhao Y, Zhang B, Tang D, Du Y (2015) CoxFey@C composites with tunable atomic ratios for excellent electromagnetic absorption properties. Sci Rep 5:18249

    CAS  Google Scholar 

  59. Lv H, Yang Z, Wang PL, Ji G, Song J, Zheng L, Zeng H, Xu ZJ (2018) A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv Mater 30:1706343

    Google Scholar 

  60. Zhang N, Huang Y, Wang M (2018) Synthesis of graphene/thorns-like polyaniline/alpha-Fe2O3@SiO2 nanocomposites for lightweight and highly efficient electromagnetic wave absorber. J Colloid Interface Sci 530:212–222

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51672129 and 51702158), the Fundamental Research Funds for the Central Universities (NS2017036), and Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX18_0322).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengjun Yao or Jintang Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1094 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Y., Yao, Z., Lin, H. et al. Synthesis and characterization of carbonyl iron@epoxy core–shell microspheres for enhanced microwave absorption performance. J Mater Sci 54, 11827–11840 (2019). https://doi.org/10.1007/s10853-019-03770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03770-8

Navigation