Skip to main content
Log in

Surface morphology modulation and wave-absorbing properties of C@TiO2 composite microspheres

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we synthesized phenolic resin microspheres through the condensation reaction of resorcinol and formaldehyde. Subsequently, lychee-like C@TiO2 microspheres were prepared using a process of hydrolytic coating and high-temperature calcination. Under alkaline hydrolysis conditions, the hydroxyl group of phenolic resin can exist stably and react readily with tetrabutyl titanate to form complexes, and then tetrabutyl titanate can be dispersed uniformly. We evaluated the microwave absorption performance of C@TiO2 composites generated by calcination at different temperatures. The result showed that morphology control can be achieved through temperature regulation, and effective electromagnetic wave absorption in the X, C, and Ku bands can be achieved by adjusting the thickness. The lowest reflection loss (RLmin) is − 34.3dB to − 38.46dB, and the effective absorption bandwidth (EAB) is 2.33 to 4.29 GHz. As a typical semiconductor, TiO2 can effectively adjust the overall dielectric properties of carbon material, which optimizes impedance matching and generates new heterogeneous interfaces, thus improving the wave absorption performance of the composites. In addition, this method has the advantages of easy preparation, low cost, controllable structure, uniform dispersion of coating particles, and environmental friendliness. This makes it a potential microwave absorbing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B.P. Singh, A.P. Singh, S.K. Dhawan, R. Dhakate, Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 8(16), 10600–10608 (2016). https://doi.org/10.1021/acsami.5b12334

    Article  CAS  PubMed  Google Scholar 

  2. X.F. Meng, S. Dong, Design and construction of lightweight C/Co heterojunction nanofibres for enhanced microwave absorption performance. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.151806

    Article  Google Scholar 

  3. M. Wang, H.Q. Wang, L. An, B. Zhang, X. Huang, G. Wen, B. Zhong, Y. Yu, Facile fabrication of hildewintera-colademonis-like hexagonal boron nitride/carbon nanotube composite having light weight and enhanced microwave absorption. J. Colloid Interface Sci. 564, 454–466 (2020). https://doi.org/10.1016/j.jcis.2019.12.124

    Article  ADS  CAS  PubMed  Google Scholar 

  4. K. Su, Y. Wang, K.X. Hu, X. Fang, J. Yao, Q. Li, J. Yang, Ultralight and high-strength SiCnw@SiC foam with highly efficient microwave absorption and heat Insulation properties. ACS Appl. Mater. Interfaces 13(18), 22017–22030 (2021). https://doi.org/10.1021/acsami.1c03543

    Article  CAS  PubMed  Google Scholar 

  5. L.W. Zhu, N. Liu, X.C. Lv, Z.Q. Zhang, L.M. Yu, X. Li, A novel metal-organic framework derived carbon nanoflower with effective electromagnetic microwave absorption and high-performance electrochemical energy storage properties. Chem. Commun. (Camb) 57(20), 2539–2542 (2021). https://doi.org/10.1039/d1cc00253h

    Article  CAS  PubMed  Google Scholar 

  6. M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, X.W. He, K.H. Su, Q. Zhang, Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11(3), 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0

    Article  CAS  Google Scholar 

  7. Y. Zhang, Y. Huang, H.H. Chen, Z.Y. Huang, Y. Yang, P.S. Xiao, Y. Zhou, Y. Chen, Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 438–447 (2016). https://doi.org/10.1016/j.carbon.2016.04.070

    Article  CAS  Google Scholar 

  8. X.C. Zhang, X. Zhang, H.R. Yuan, K.Y. Li, Q.Y. Ouyang, C.L. Zhu, S. Zhang, Y. Chen, CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123208

    Article  PubMed  PubMed Central  Google Scholar 

  9. B. Zhong, C.J. Wang, Y.L. Yu, L. Xia, G. Wen, Facile fabrication of carbon microspheres decorated with B(OH)3 and alpha-Fe2O3 nanoparticles: superior microwave absorption. J. Colloid Interface Sci. 505, 402–409 (2017). https://doi.org/10.1016/j.jcis.2017.05.116

    Article  ADS  CAS  PubMed  Google Scholar 

  10. S. Gao, Y. Zhang, H. Xing, H. Li, Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124149

    Article  PubMed  PubMed Central  Google Scholar 

  11. L. Wang, X. Li, Q.Q. Li, Y.H. Zhao, R. Che, Enhanced polarization from Hollow cube-like ZnSnO3 wrapped by Multiwalled Carbon nanotubes: as a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces 10(26), 22602–22610 (2018). https://doi.org/10.1021/acsami.8b05414

    Article  CAS  PubMed  Google Scholar 

  12. H.C. Xu, L.Z. Jia, J.H. Zhang, Z.H. Zhang, Y.H. Wei, Combined effects of tillage direction and slope gradient on soil translocation by hoeing. Catena 175, 421–429 (2019). https://doi.org/10.1016/j.catena.2018.12.039

    Article  Google Scholar 

  13. S. Parida, R. Parida, B. Parida, S.K. Srivastava, N.C. Nayak, Exfoliated graphite nanoplatelet (xGnP) filled EVA/EOC blends nanocomposites for efficient microwave absorption in the S-band (2–4 GHz). Compos. Sci. Technol. (2021). https://doi.org/10.1016/j.compscitech.2021.108716

    Article  Google Scholar 

  14. X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang, L. Guo, G.S. Wang, Tunable high-performance microwave absorption of Co1-xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201800761

    Article  PubMed  PubMed Central  Google Scholar 

  15. X.G. Huang, M. Qiao, X.C. Lu, Y.F. Li, Y.B. Ma, B. Kang, B. Quan, G. Ji, Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 14(11), 4006–4013 (2021). https://doi.org/10.1007/s12274-021-3327-x

    Article  ADS  CAS  Google Scholar 

  16. G.V. Kurlyandskaya, S.M. Bhagat, C. Luna, Microwave absorption of nanoscale CoNi powders. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2191740

    Article  Google Scholar 

  17. Z.W. Ren, W.C. Zhou, Y.C. Qing, S.C. Duan, H.J. Pan, Y.Y. Zhou, N. Li, Microwave absorption and mechanical properties of SiCf/SiOC composites with SiO2 fillers. Ceram. Int. 47(6), 8478–8485 (2021). https://doi.org/10.1016/j.ceramint.2020.11.214

    Article  CAS  Google Scholar 

  18. D. Micheli, A. Vricella, R. Pastore, M. Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon 77, 756–774 (2014). https://doi.org/10.1016/j.carbon.2014.05.080

    Article  CAS  Google Scholar 

  19. C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du, S.R. Hu, J.Y. Wang, X. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3555436

    Article  PubMed  PubMed Central  Google Scholar 

  20. B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014). https://doi.org/10.1002/adma.201400108

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Y. Cheng, H.Q. Zhao, Y. Zhao, J.M. Cao, J. Zheng, G. Ji, Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response. Carbon 161, 870–879 (2020). https://doi.org/10.1016/j.carbon.2020.02.011

    Article  CAS  Google Scholar 

  22. H. Sun, R.C. Che, X. You, Y.H. Jiang, Z.B. Yang, J. Deng, L.B. Qiu, Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735

    Article  CAS  PubMed  Google Scholar 

  23. H. Zhou, J.C. Wang, J.D. Zhuang, Q. Liu, A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 5(24), 12502–12511 (2013). https://doi.org/10.1039/c3nr04379g

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R. Che, CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 microspheres with strong Wideband Microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149

    Article  CAS  PubMed  Google Scholar 

  25. R. Qiang, Y.C. Du, Y. Wang, N. Wang, C.H. Tian, J. Ma, P. Xu, X. Han, Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 98, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.11.054

    Article  CAS  Google Scholar 

  26. J. Hu, Y. Shen, L.H. Xu, Y. Liu, Facile preparation of flower-like MnO2/reduced graphene oxide (RGO) nanocomposite and investigation of its microwave absorption performance. Chem. Phys. Lett. (2020). https://doi.org/10.1016/j.cplett.2019.136953

    Article  Google Scholar 

  27. L.J. Yang, H.L. Lv, M. Li, Y. zhang, J.C. Liu, Z. Yang, Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123666

    Article  PubMed  PubMed Central  Google Scholar 

  28. S. Kang, S.Y. Qiao, Y.T. Cao, Z.M. Hu, J.R. Yu, Y. Wang, J. Zhu, Hyper-cross-linked polymers-derived porous tubular carbon nanofibers@TiO2 toward a wide-band and lightweight microwave absorbent at a low loading content. ACS Appl. Mater. Interfaces 12(41), 46455–46465 (2020). https://doi.org/10.1021/acsami.0c11839

    Article  CAS  PubMed  Google Scholar 

  29. S. ur Rehman, J. Liu, Z.B. Fang, J.M. Wang, R.D. Ahmed, C.C. Wang, H. Bi, Heterostructured TiO2/C/Co from ZIF-67 frameworks for microwave-absorbing nanomaterials. ACS Appl. Nano Mater. 2(7), 4451–4461 (2019). https://doi.org/10.1021/acsanm.9b00841

    Article  CAS  Google Scholar 

  30. A. Masakazu, S. Takahito, Y. Kubokawa, Esr and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small TiO2 paricles. Chem. Lett. (1985). https://doi.org/10.1246/cl.1985.1799

    Article  Google Scholar 

  31. M.A.R. Miranda, J.M. Sasaki, The limit of application of the Scherrer equation. Acta Crystallogr. Found. Adv. 74(Pt 1), 54–65 (2018). https://doi.org/10.1107/S2053273317014929

    Article  MathSciNet  CAS  Google Scholar 

  32. J.B. Cheng, W.J. Yuan, A.N. Zhang, H.B. Zhao, Y.Z. Wang, Porous CoNi nanoalloy@N-doped carbon nanotube composite clusters with ultra-strong microwave absorption at a low filler loading. J. Mater. Chem. C 8(39), 13712–13722 (2020). https://doi.org/10.1039/d0tc03377d

    Article  CAS  Google Scholar 

  33. J.Q. Tao, J.T. Zhou, Z.J. Yao, Z.B. Jiao, B. Wei, R.Y. Tan, Z. LI, Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 172, 542–555 (2021). https://doi.org/10.1016/j.carbon.2020.10.062

    Article  CAS  Google Scholar 

  34. J.Q. Wang, Y. Huyan, Z.T. Yang, A.B. Zhang, Q.Y. Zhang, B. Zhang, Tubular carbon nanofibers: synthesis, characterization and applications in microwave absorption. Carbon 152, 255–266 (2019). https://doi.org/10.1016/j.carbon.2019.06.048

    Article  CAS  Google Scholar 

  35. X.F. Shi, Z.W. Liu, X. Li, W.B. You, Z.Z. Shao, R. Che, Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2-x heterostructure for broadband microwave absorption. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.130020

    Article  PubMed  PubMed Central  Google Scholar 

  36. J.Q. Wang, F. Wu, Y.H. Cui, J.J. Chen, A.B. Zhang, Q.Y. Zhang, B. Zhang, Facile synthesis of tubular magnetic carbon nanofibers by hypercrosslinked polymer design for microwave adsorption. J. Am. Ceram. Soc. 103(10), 5706–5720 (2020). https://doi.org/10.1111/jace.17302

    Article  CAS  Google Scholar 

  37. J. Xu, Z.H. Liu, J.Q. Wang, P. Liu, M. Ahmad, Q.Y. Zhang, B. Zhang, Preparation of core-shell C@TiO2 composite microspheres with wrinkled morphology and its microwave absorption. J. Colloid Interface Sci. 607(Pt 2), 1036–1049 (2022). https://doi.org/10.1016/j.jcis.2021.09.038

    Article  ADS  CAS  PubMed  Google Scholar 

  38. X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations  Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2830995

    Article  Google Scholar 

  39. P.C.P. Watts, W.K. Hsu, A. Barnes, B. Chambers, High permittivity from defective multiwalled carbon nanotubes in the X-band. Adv. Mater. 15(78), 600–603 (2003). https://doi.org/10.1002/adma.200304485

    Article  CAS  Google Scholar 

  40. S. Kang, W. Zhang, Z.M. Hu, J.R. Yu, Y. Wang, J. Zhu, Porous core-shell zeolitic imidazolate framework-derived Co/NPC@ZnO-decorated reduced graphene oxide for lightweight and broadband electromagnetic wave absorber. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152932

    Article  PubMed  PubMed Central  Google Scholar 

  41. X.M. Zhang, G.B. Ji, W. Liu, B. Quan, X.H. Liang, C.M. Shang, Y. Cheng, Y. Du, Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 7(30), 12932–12942 (2015). https://doi.org/10.1039/c5nr03176a

    Article  ADS  CAS  PubMed  Google Scholar 

  42. X.Y. Wang, T. Zhu, S.C. Chang, Y.K. Lu, W.B. Mi, W. Wang, 3D nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12(9), 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489

    Article  CAS  PubMed  Google Scholar 

  43. P.B. Liu, S. Gao, Y. Wang, F.T. Zhou, Y. Huang, W.H. Huang, N. Chang, Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 170, 503–516 (2020). https://doi.org/10.1016/j.carbon.2020.08.043

    Article  CAS  Google Scholar 

  44. H.Q. Zhao, Y. Cheng, Z. Zhang, J.W. Yu, J. Zheng, M. Zhou, L. Zhou, B.S. Zhang, G. Ji, Rational design of core-shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption. Compos. Part. B: Eng. (2020). https://doi.org/10.1016/j.compositesb.2020.108119

    Article  Google Scholar 

  45. F. Wu, P. Liu, J.Q. Wang, T. Shah, M. Ahmad, Q.Y. Zhang, Zhang.Fabrication of magnetic tubular fiber with multi-layer heterostructure and its microwave absorbing properties [J]. J. Colloid Interface Sci. 577, 242–255 (2020). https://doi.org/10.1016/j.jcis.2020.05.058

    Article  ADS  CAS  PubMed  Google Scholar 

  46. J.Q. Wang, Y.H. Cui, F. Wu, T. Shah, M. Ahmad, A. Zhang, Q.Y. Zhang, B. Zhang, Core-shell structured Fe/Fe3O4@TCNFs@TiO2 magnetic hybrid nanofibers: preparation and electromagnetic parameters regulation for enhanced microwave absorption. Carbon 165, 275–285 (2020). https://doi.org/10.1016/j.carbon.2020.04.090

    Article  CAS  Google Scholar 

  47. F. Wu, Z.H. Liu, J.Q. Wang, T. Shah, P. Liu, Q.Y. Zhang, B. Zhang, Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.130591

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Basic research expenses Project for Provincial Colleges and Universities (JYG2021001) and Tangshan Science and Technology Planning Project (21130203 C) and Technology Development Project (20230241).

Author information

Authors and Affiliations

Authors

Contributions

ZZ, XY and YC: initiated this project and designed the experiments. ZZ and XY: synthesized the samples. ZZ, XY and FZ: characterized the samples and performed the properties measurements. ZZ, XY: wrote the original manuscript. YC: supervised the research and revised the manuscript. All the authors discussed the results.

Corresponding author

Correspondence to Yang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or any competing interest.

Ethical approval

All the carried out experiments did not involve any human tissue and did not require any ethical approval.

Consent to participate

All authors declare their consent and acceptance for participation in the present work.

Consent for publication

All authors declare their consent for publication the submitted manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yin, X., Zhang, F. et al. Surface morphology modulation and wave-absorbing properties of C@TiO2 composite microspheres. J Mater Sci: Mater Electron 35, 356 (2024). https://doi.org/10.1007/s10854-024-12115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12115-4

Navigation