Skip to main content
Log in

Effects of precursor composition on morphology and microstructure of hybrid organic–inorganic perovskite solar cells

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of compositions on the crystalline structures, microstructures and optical characteristics of perovskite CH3NH3PbI3 films were investigated via varying the molar ratios of CH3NH3I (MAI) to PbI2 in the precursor solutions. As the amounts of MAI were increased in the precursor solution, the formation of CH3NH3PbI3 was facilitated, and the grain sizes as well as absorbance of the resulting films were increased. The enlarged grain of the prepared films effectively suppressed the carrier recombination at grain boundary and improved the electrical performance of the fabricated solar cells. The analysis of diode parameters also revealed that the additional shunt path was suppressed. On the other hand, once the molar ratio of MAI to PbI2 was further increased, the roughness of film surface was increased and caused the carrier recombination between absorber layers and hole-transport layers, thereby resulting in a dramatic decrease in conversion efficiency. This investigation indicated that controlling the compositions in the precursors of CH3NH3PbI3 films is crucial to improve the photovoltaic properties of perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Sheikh AD, Patil AP, Mali SS, Hong CK, Patil PS (2019) New insights into active-area-dependent performance of hybrid perovskite solar cells. J Mater Sci 54:10825–10835. https://doi.org/10.1007/s10853-019-03655-w

    Article  Google Scholar 

  2. Hodes G (2013) Perovskite-based solar cells. Science 342:317–318

    Article  Google Scholar 

  3. Yan K, Long M, Zhang T, Wei Z, Chen H, Yang S, Xu J (2015) Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc 137:4460–4468

    Article  Google Scholar 

  4. Yang M, Li Z, Reese MO, Reid OG, Kim DH, Siol S, Klein TR, Yan Y, Berry JJ, van Hest MFAM, Zhu K (2017) Perovskite ink with wide processing window for scalable high efficiency solar cells. Nat Energy 2:17038

    Article  Google Scholar 

  5. Manser JS, Reid B, Kamat PV (2015) Evolution of organic–inorganic lead halide perovskite from solid-state iodoplumbate complexes. J Phys Chem C 119:17065–17073

    Article  Google Scholar 

  6. Huang W, Manser JS, Kamat PV, Ptasinska S (2016) Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions. Chem Mater 28:303–311

    Article  Google Scholar 

  7. Park BW et al (2018) Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat Commun 9:3301

    Article  Google Scholar 

  8. Hieulle J et al (2019) Unraveling the impact of halide mixing on perovskite stability. J Am Chem Soc 141:3515–3523

    Article  Google Scholar 

  9. Liang Z, Bi Z, Gao K, Fu Y, Guan P, Feng X, Chai Z, Xu G, Xu X (2019) Interface modification via Al2O3 with retarded charge recombinations for mesoscopic perovskite solar cells fabricated with spray deposition process in the air. Appl Surf Sci 463:939–946

    Article  Google Scholar 

  10. Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H (2018) Challenges for commercializing perovskite solar cells. Science 361:8235

    Article  Google Scholar 

  11. Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle AJ, Chou KW, Amassian A, Sargent EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7:577–582

    Article  Google Scholar 

  12. Li W, Furlan A, Hendriks KH, Wienk MM, Janssen RAJ (2013) Efficient tandem and triple-junction polymer solar cells. J Am Ceram Soc 135:5529–5532

    Google Scholar 

  13. Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni WL, Li YZ, He G, Li C, Kan B, Li M, Chen Y (2013) Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J Am Ceram Soc 135:8484–8487

    Google Scholar 

  14. Van der Poll TS, Love JA, Nguyen TQ, Bazan GC (2012) Non-basic high-performance molecules for solution-processed organic solar cells. J Adv Mater 24:3646–3649

    Article  Google Scholar 

  15. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13(9):897–903

    Article  Google Scholar 

  16. Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:945–947

    Article  Google Scholar 

  17. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJJ (2013) Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344

    Article  Google Scholar 

  18. Xing GM, Mathews N, Sun SY, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342:344–347

    Article  Google Scholar 

  19. Shin SS, Yeom EJ, Yang WS, Hur S, Kim MG, Im J, Seo J, Noh JH, Seok SI (2017) Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356:167–171

    Article  Google Scholar 

  20. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Article  Google Scholar 

  21. Chen Q, Zhou H, Song TB, Luo S, Hong Z, Duan HS, Dou L, Liu Y, Yang Y (2014) Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett 14(7):4158–4163

    Article  Google Scholar 

  22. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  Google Scholar 

  23. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok S (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13:897–903

    Article  Google Scholar 

  24. Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng YB, Spiccia L (2014) A fast deposition-crystallization procedure for highly efficient leadiodide perovskite thin-film solar cells. Angew Chem Int Ed 53:9898–9903

    Article  Google Scholar 

  25. Ahn N, Son DY, Jang IH, Kang SM, Choi M, Park NG (2015) Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J. Am. Chem. Soc., 137 (27), 8696–8699

  26. Saliba M, Matsui T, Seo JY, Domanski K, Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldtd A, Grätzela M (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997

    Article  Google Scholar 

  27. Kim BG, Jang W, Cho JS, Wang DH (2019) Tailoring solubility of methylammonium lead halide with non-stoichiometry molar ratio in perovskite solar cells: morphological and electrical relationships for high current generation. Solar Energy Mater Solar Cells 192:24–35

    Article  Google Scholar 

  28. Zhao Y, Liu J, Lu X, Gao Y, You X, Xu X (2015) Improving the efficiency of perovskite solar cells through optimization of the CH3NH3PbI3 film growth in solution process method. Appl Surf Sci 359:560–566

    Article  Google Scholar 

  29. Assadia MK, Bakhodaa S, Saidurb R, Hanaeia H (2018) Recent progress in perovskite solar cells. Renew Sustain Energy Rev 81:2812–2822

    Article  Google Scholar 

  30. Baikie T et al (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1:5628–5641

    Article  Google Scholar 

  31. Kojima A, Ikegami M, Teshima K, Miyasaka T (2012) Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chem Lett 41:397–399

    Article  Google Scholar 

  32. Yan K, Long M, Zhang T, Wei Z, Chen H, Yang S, Xu J (2015) Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc 137:4460–4468

    Article  Google Scholar 

  33. Zhou Y, Game OS, Pang S, Padture NP (2015) Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J Phys Chem Lett 6(23):4827–4839

    Article  Google Scholar 

  34. Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J (2015) Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun 6:7747

    Article  Google Scholar 

  35. Marchioro A et al (2014) Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat Photon 8:250–255

    Article  Google Scholar 

  36. Dong H et al (2018) Alleviating hysteresis and improving efficiency of MA12-yFAyPbI3-2xBrx perovskite solar cells by controlling the halide composition. J Mater Sci 53:16500–16510. https://doi.org/10.1007/s10853-018-2780-8

    Article  Google Scholar 

  37. Poota M, Tangb HX (2014) Broadband nanoelectromechanical phase shifting of light on a chip Appl. Phys Lett 104:061101

    Google Scholar 

  38. You J et al (2014) Moisture assisted perovskite film growth for high performance solar cells. Appl Phys Lett 105:183902

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “Advanced Research Center For Green Materials Science and Technology” from The Featured Area Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (107L9006) and the Ministry of Science and Technology in Taiwan (MOST 107-3017-F-002-001 and MOST 107-2218-E-002-022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hsin Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, CH., Chen, GR. & Kuo, MT. Effects of precursor composition on morphology and microstructure of hybrid organic–inorganic perovskite solar cells. J Mater Sci 54, 12758–12766 (2019). https://doi.org/10.1007/s10853-019-03766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03766-4

Navigation