Skip to main content
Log in

New insights into active-area-dependent performance of hybrid perovskite solar cells

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The morphology of hybrid perovskite thin films depends strongly on the processing parameters due to its complex crystallization kinetics from a solution to solid perovskite halide phase. It is also profoundly sensitive to the device area of the deposited thin film, and hence reproducible photoconversion efficiency (PCE) remained a bottleneck for the fabrication of efficient photovoltaic devices having large active area. The present work focuses on the investigations of the relationship between perovskite ink concentration-dependent quality of the perovskite overlayer and PCE of the perovskite solar cells (PSC) while scaling-up process. The field-emission scanning electron microscopy images revealed that the surface coverage of perovskite overlayer depends on the concentration of perovskite solution and device area. The active-area-dependent current density (J)-voltage (V) and external quantum efficiency measurements identify morphology-dependent variation in charge-transport/recombination pathways. We confirmed that among different precursor concentrations, 40 wt% perovskite ink is suitable to produce uniform perovskite overlayer over 1 cm2. As a result, highly reproducible PCE ~ 13% has been achieved for the PSC having an active area of 1 cm2. Overall, our findings significantly provide new insights into the active-area-dependent PCE of PSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  Google Scholar 

  2. Hodes G (2013) Perovskite-based solar cells. Science 342:317–318

    Article  Google Scholar 

  3. Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-the efficiency solar cells. J Phys Chem Lett 4:3623–3630

    Article  Google Scholar 

  4. Yang M, Li Z, Reese MO, Reid OG, Kim DH, Siol S, Klein TR, Yan Y, Berry JJ, van Hest MFAM, Zhu K (2017) Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat Energy 2:17038

    Article  Google Scholar 

  5. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344

    Article  Google Scholar 

  6. Huang W, Manser JS, Kamat PV, Ptasinska S (2016) Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions. Chem Mater 28:303–311

    Article  Google Scholar 

  7. Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G, Cahen D (2014) Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3–xClx perovskite solar cells. Nat Commun 5:3461

    Article  Google Scholar 

  8. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 338:643–647

    Article  Google Scholar 

  9. Liang Z, Bi Z, Gao K, Fu Y, Guan P, Feng X, Chai Z, Xu G, Xu X (2019) Interface modification via Al2O3 with retarded charge recombinations for mesoscopic perovskite solar cells fabricated with spray deposition process in the air. Appl Surf Sci 463:939–946

    Article  Google Scholar 

  10. Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H (2018) Challenges for commercializing perovskite solar cells. Science 361:eaat8235. https://doi.org/10.1126/science.aat8235

    Article  Google Scholar 

  11. Sheikh AD, Bera A, Haque MA, Rakhi RB, Gobbo SD, Alshareef HN, Wu T (2015) Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells. Sol Eng Mater Sol Cells 137:6–14

    Article  Google Scholar 

  12. Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S (2015) The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew Chem Int Edit 54:8208–8212

    Article  Google Scholar 

  13. Sheikh AD, Munir R, Haque MA, Bera A, Hu W, Shaikh P, Amassian A, Wu T (2017) Effects of high temperature and thermal cycling on the performance of perovskite solar cells: acceleration of charge recombination and deterioration of charge extraction. ACS Appl Mater Interfaces 9:35018–35029

    Article  Google Scholar 

  14. Shirayama M, Kato M, Miyadera T, Sugita T, Fujiseki T, Hara S, Kadowaki H, Murata D, Chikamatsu M, Fujiwara H (2016) Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air. J Appl Phys 119:115501

    Article  Google Scholar 

  15. Chen S, Du X, Lin D, Xie F, Xie W, Gong L, Zhang W, Liu P, Chen J (2018) Thermal and light induced surface instability of perovskite films in the photoelectron spectroscopy measurement. J Electron Spectrosc Relat Phenom 229:108–113

    Article  Google Scholar 

  16. Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI (2017) Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356:1376–1379

    Article  Google Scholar 

  17. Munir R, Sheikh AD, Abdelsamie M, Hu H, Yu L, Zhao K, Kim T, Tall OE, Li R, Smilgies DM, Amassian A (2017) Hybrid perovskite thin film photovoltaics: in situ diagnostics and importance of the precursor solvate phases. Adv Mater 29:1604113

    Article  Google Scholar 

  18. Tai Q, You P, Sang H, Liu Z, Hu C, Chan HLW, Yan F (2016) Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat Commun 7:11105

    Article  Google Scholar 

  19. Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD (2015) High-efficiency solution-processed perovskite solar cells with millimetre-scale grains. Science 347:522–525. https://doi.org/10.1126/science.aaa0472

    Article  Google Scholar 

  20. Salim T, Sun S, Abe Y, Krishna A, Grimsdale AC, Lam YM (2015) Perovskite-based solar cells: impact of morphology and device architecture on device performance. J Mater Chem A 3:8943–8969

    Article  Google Scholar 

  21. Li G, Ching KL, Ho JYL, Wong M, Kwok HS (2015) Identifying the optimum morphology in high-performance perovskite solar cells. Adv Energy Mater 5:1401775

    Article  Google Scholar 

  22. Eperon GE, Burlakov VM, Docampo P, Goriely A, Snaith HJ (2014) Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater 24:151–157

    Article  Google Scholar 

  23. Chen W, Wu YZ, Yue YF, Liu J, Zhang WJ, Yang XD, Chen H, Bi EB, Ashraful I, Gratzel M, Han LY (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350:944–948

    Article  Google Scholar 

  24. Haque MA, Sheikh AD, Guan X, Wu T (2017) Metal oxides as efficient charge transporters in perovskite solar cells. Adv Energy Mater 7:1602803

    Article  Google Scholar 

  25. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13:897–903

    Article  Google Scholar 

  26. Paek S, Schouwink P, Athanasopoulou EN, Cho KT, Grancini G, Lee Y, Zhang Y, Stellacci F, Nazeeruddin MK, Gao P (2017) From nano- to micrometer scale: the role of antisolvent treatment on high performance perovskite solar cells. Chem Mater 29:3490–3498

    Article  Google Scholar 

  27. Ugur E, Sheikh AD, Munir R, Khan JI, Barrit D, Amassian A, Laquai F (2017) Improved morphology and efficiency of n-i-p planar perovskite solar cells by processing with glycol ether additives. ACS Energy Lett 2:1960–1968

    Article  Google Scholar 

  28. Chen J, Song J, Huang F, Li H, Liu S, Wang M, Shen Y (2017) The role of synthesis parameters on crystallization and grain size in hybrid halide perovskite solar cells. J Phys Chem C 121:17053–17061

    Article  Google Scholar 

  29. Sakai N, Wang Z, Burlakov VM, Lim J, McMeekin D, Pathak S, Snaith HJ (2017) Controlling nucleation and growth of metal halide perovskite thin films for high-efficiency perovskite solar cells. Small 13:1602808

    Article  Google Scholar 

  30. Chen Y, Zhang L, Zhang Y, Gao H, Yan H (2018) Large-area perovskite solar cells-a review of recent progress and issues. RSC Adv 8:10489–10508

    Article  Google Scholar 

  31. Agarwal S, Nair PR (2017) Pinhole induced efficiency variation in perovskite solar cells. J Appl Phys 122:163104

    Article  Google Scholar 

  32. Liang Z, Bi Z, Gao K, Fu Y, Guan P, Feng X, Chai Z, Xu G, Xu X (2019) Interface modification via Al2O3 with retarded charge recombinations for mesoscopic perovskite solar cells fabricated with spray deposition process in the air. Appl Surf Sci 463:939–946

    Article  Google Scholar 

  33. Wang Z, Fang J, Mi Y, Zhu X, Ren H, Liu X, Yan Y (2018) Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of meso-TiO2. Appl Surf Sci 436:596–602

    Article  Google Scholar 

  34. Snaith HJ (2012) The perils of solar cell efficiency measurements. Nat Photonics 6:337–340

    Article  Google Scholar 

  35. Li B, Tian J, Guo L, Fei C, Shen T, Qu X, Cao G (2016) Dynamic growth of pinhole-free conformal CH3NH3PbI3 film for perovskite solar cells. ACS Appl Mater Interfaces 8:4684–4690

    Article  Google Scholar 

Download references

Acknowledgements

The author A. D. Sheikh would like to thank the Department of Science and Technology (DST), Ministry of Science and Technology, Government of India, for the research grant and INSPIRE Faculty Award No. DST/INSPIRE/04/2015/002601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif D. Sheikh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, A.D., Patil, A.P., Mali, S.S. et al. New insights into active-area-dependent performance of hybrid perovskite solar cells. J Mater Sci 54, 10825–10835 (2019). https://doi.org/10.1007/s10853-019-03655-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03655-w

Navigation