Skip to main content

Advertisement

Log in

Recent advances in structure design for enhancing photocatalysis

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Semiconductor photocatalysis has attracted considerable attention because it is a promising way to deal with the global energy scarcity and environmental degradation. Over the past few decades, numerous strategies have been put forward to improve the visible-light absorption and decrease the electron–hole recombination of semiconductor photocatalysts. This review mainly focuses on the recent progress in morphology and the structure design of heterostructure-based semiconductor photocatalysts. In addition, the photocatalytic performance of semiconductor systems discussed mainly involves the environmental and energy application, including the degradation of pollutants, hydrogen generation and reduction of CO2 to form hydrocarbon fuel. Finally, the challenges and perspectives for future development of photocatalysts are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Google Scholar 

  2. Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Google Scholar 

  3. Tong H, Ouyang SX, Bi YP, Umezawa N, Oshikiri M, Ye JH (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251

    Google Scholar 

  4. Li HJ, Zhou Y, Tu WG, Ye JH, Zou ZG (2015) State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater 25:998–1013

    Google Scholar 

  5. Low JX, Jiaguo Yu JG, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:1601694

    Google Scholar 

  6. Shin S, Han HS, Kim JS, Park IJ, Lee MH, Hong KS et al (2015) A tree-like nanoporous WO3 photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation. J Mater Chem A 3:12920–12926

    Google Scholar 

  7. Zhang JJ, Li WS, Li Y, Zhong L, Xu CJ (2017) Self-optimizing bifunctional CdS/Cu2S with coexistence of light-reduced Cu0 for highly efficient photocatalytic H2 generation under visible-light irradiation. Appl Catal B Environ 217:30–36

    Google Scholar 

  8. Shi R, Ye HF, Liang F, Wang Z, Li K, Weng YX et al (2018) P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents. Adv Mater 30:1705941

    Google Scholar 

  9. Chen YG, Zhao S, Wang X, Peng Q, Lin R, Wang Y et al (2016) Synergetic integration of Cu1.94S–ZnxCd1−xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J Am Chem Soc 138:4286–4289

    Google Scholar 

  10. Zhang JY, Xiao GC, Xiao FX, Liu B (2017) Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: a critical review. Mater Chem Front 1:231–250

    Google Scholar 

  11. Boyjoo Y, Sun HQ, Liu J, Pareek VK, Wang SB (2017) A review on photocatalysis for air treatment: from catalyst development to reactor design. Chem Eng J 310:537–559

    Google Scholar 

  12. Piccirillo C, Castro PML (2017) Calcium hydroxyapatite-based photocatalysts for environment remediation: characteristics, performances and future perspectives. J Environ Manag 193:79–91

    Google Scholar 

  13. Bora LV, Mewada RK (2017) Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review. Renew Sustain Energy Rev 76:1393–1421

    Google Scholar 

  14. Zhang W, Kjær KS, Alonso-Mori R, Bergmann U, Chollet M, Fredin LA et al (2017) Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution. Chem Sci 8:515–523

    Google Scholar 

  15. Wang SL, Kershaw SV, Li G, Leung MKH (2015) The self-assembly synthesis of tungsten oxide quantum dots with enhanced optical properties. J Mater Chem C 3:3280–3285

    Google Scholar 

  16. Gholipour MR, Dinh CT, Béland F, Do TO (2015) Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production fro water splitting. Nanoscale 7:8187–8208

    Google Scholar 

  17. Wang SL, Lin SH, Zhang DQ, Li GS, Leung MKH (2017) Controlling charge transfer in quantum-size titania for photocatalytic applications. Appl Catal B Environ 215:85–92

    Google Scholar 

  18. Liu J (2017) Catalysis by supported single metal atoms. ACS Catal 7:34–59

    Google Scholar 

  19. Cui XJ, Junge K, Dai XC, Kreyenschulte C, Pohl MM, Wohlrab S et al (2017) Synthesis of single atom based heterogeneous platinum catalysts: high selectivity and activity for hydrosilylation reactions. ACS Cent Sci 3:580–585

    Google Scholar 

  20. Fang XZ, Shang QC, Wang Y, Jiao L, Yao T, Li YF et al (2018) Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv Mater 30:1705112

    Google Scholar 

  21. Tong T, Zhu BC, Jiang CJ, Cheng B, Yu JG (2018) Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4. Appl Surf Sci 433:1175–1183

    Google Scholar 

  22. Zhang H, Wei J, Dong J, Liu G, Shi L, An P et al (2016) Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew Chem Int Ed 55:14310–14314

    Google Scholar 

  23. Gao C, Chen SJ, Wang Y, Wang JW, Zheng XS, Zhu JF (2018) Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer. Adv Mater 30:1704624

    Google Scholar 

  24. Fujiwara K, Pratsinis SE (2018) Single Pd atoms on TiO2 dominate photocatalytic NOx removal. Appl Catal B Environ 226:127–134

    Google Scholar 

  25. Wang FL, Wang YF, Li YY, Cui XH, Zhang QX, Xie ZJ et al (2018) Facile synthesis of single atom-dispersed silver-modified ultrathin g-C3N4 hybrid for the enhanced visible-light photocatalytic degradation of sulfamethazine with peroxymonosulfate. Dalton Trans 47:6924–6933

    Google Scholar 

  26. Li XG, Bi WT, Zhang L, Tao S, Chu WS, Zhang Q et al (2016) Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater 28:2427–2431

    Google Scholar 

  27. Gao GP, Jiao Y, Waclawik ER, Du AJ (2016) Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J Am Chem Soc 138:6292–6297

    Google Scholar 

  28. Fei HL, Dong JC, Arellano-Jimenez MJ, Ye GL, Kim ND, Samuel ELG et al (2015) Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 6:8668

    Google Scholar 

  29. Qiu HJ, Ito Y, Cong WT, Tan YW, Liu P, Hirata A et al (2015) Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed 54:14031–14035

    Google Scholar 

  30. Zhang HB, Liu GG, Shi L, Ye JH et al (2018) Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater 8:1701343

    Google Scholar 

  31. Han C, Liu SQ, Tang ZR, Xu YG (2015) One-dimensional nanostructures for photocatalytic organic synthesis. Curr Org Chem 16:484–497

    Google Scholar 

  32. Ohno T, Higo T, Saito H, Yuajn S, Jin Z, Yin Y (2015) Dependence of photocatalytic activity on aspect ratio of a brookite TiO2 nanorod and drastic improvement in visible light responsibility of a brookite TiO2 nanorod by site-selective modification of Fe3+ on exposed faces. J Mol Catal A Chem 396:261–267

    Google Scholar 

  33. Sharma R, Khanuja M, Islam SS, Singhal U (2017) Aspect-ratio-dependent photoinduced antimicrobial and photocatalytic organic pollutant degradation efficiency of ZnO nanorods. Res Chem Intermediat 43:5345–5364

    Google Scholar 

  34. Zhang HL, Hu CG, Ding Y, Lin Y (2015) Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO. J Alloys Compd 625:90–94

    Google Scholar 

  35. Di TM, Zhu BC, Zhang J, Cheng B, Yu JG (2016) Enhanced photocatalytic H2 production on CdS nanorod using cobalt-phosphate as oxidation cocatalyst. Appl Surf Sci 389:775–782

    Google Scholar 

  36. Wong RJ, Liu S, Ng YH, Ama R (2016) Fabrication of high aspect ratio and open-ended TiO2 nanotube photocatalytic arrays through electrochemical anodization. AIChE J 62:415–420

    Google Scholar 

  37. Peng Y, Wang KK, Liu T, Xu J, Xu BG (2017) Synthesis of one-dimensional Bi2O3-Bi2O2.33 heterojunctions with high interface quality for enhanced visible light photocatalysis in degradation of high-concentration phenol and MO dyes. Appl Catal B Environ 203:946–954

    Google Scholar 

  38. Zhang JY, Xiao GC, Xiao FX, Liu B (2017) Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: a critical review. Mater Chem Front 1:231–250

    Google Scholar 

  39. Qin ZX, Xue F, Chen YB, Shen SH, Guo LJ (2017) Spatial charge separation of one-dimensional Ni2P-Cd0.9Zn0.1S/g-C3N4 heterostructure for high-quantum-yield photocatalytic hydrogen production. Appl Catal B Environ 217:551–559

    Google Scholar 

  40. Han B, Liu SQ, Zhang N, Xu YJ, Tang ZR (2017) One-dimensional CdS@ MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light. Appl Catal B Environ 202:298–304

    Google Scholar 

  41. Kalantar-zadeh K, Ou JZ, Daeneke T, Strano MS, Pumera M, Gras SL (2015) Two dimensional transition metal dichalcogenides in biosystems. Adv Funct Mater 25:5086–5099

    Google Scholar 

  42. Luo B, Liu G, Wang LZ (2016) Recent advances in 2D materials for photocatalysis. Nanoscale 8:6904–6920

    Google Scholar 

  43. Nasilowski M, Mahler B, Lhuillier E, Ithurria S, Dubertret B (2016) Two-dimensional colloidal nanocrystals. Chem Rev 116:10934–10982

    Google Scholar 

  44. Haque F, Daeneke T, Kalantar-zadeh K, Ou JZ (2018) Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nano-Micro Lett 10:23

    Google Scholar 

  45. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV (2004) Electric field effect in atomically thin carbon films, Firsov. Science 306:666–669

    Google Scholar 

  46. Xia PF, Zhu BC, Yu JG, Cao SW, Jaroniec M (2017) Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J Mater Chem A 5:3230–3238

    Google Scholar 

  47. Weng QH, Wang XB, Wang X, Bando YS, Golberg D (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45:3989–4012

    Google Scholar 

  48. Ou H, Lin L, Zheng Y, Yang P, Fang Y, Wang X (2017) Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv Mater 29:1700008

    Google Scholar 

  49. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem Rev 116:7159–7329

    Google Scholar 

  50. Song XP, Yang Q, Yin MY, Tang D, Zhou LM (2018) Highly efficient pollutant removal of graphitic carbon nitride by the synergistic effect of adsorption and photocatalytic degradation. RSC Adv 8:7260–7268

    Google Scholar 

  51. Tang Q, Jiang DE (2015) Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem Mater 27:3743–3748

    Google Scholar 

  52. Zhang JL, Ye MX, Bhandari S, Muqri AKM, Long F, Bigham S et al (2017) Enhanced second and third harmonic generations of vertical and planar spiral MoS2 nanosheets. Nanotechnology 28:295301

    Google Scholar 

  53. Voiry D, Fullon R, Yang J, Silva CCC, Kappera R, Bozkurt I et al (2016) The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat Commun 15:1003–1009

    Google Scholar 

  54. Xia PF, Zhu BC, Yu JG, Cao SW, Jaroniec M (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686

    Google Scholar 

  55. Lara MA, Sayagués MJ, Navío JA, Hidalgo MC (2018) A facile shape-controlled synthesis of highly photoactive fluorine containing TiO2 nanosheets with high 001 facet exposure. J Mater Sci 53:435–446. https://doi.org/10.1007/s10853-017-1515-6

    Google Scholar 

  56. Chen W, Kuang Q, Wang QX, Xie ZX (2015) Engineering a high energy surface of anatase TiO2 crystals towards enhanced performance for energy conversion and environmental applications. RSC Adv 5:20396–20409

    Google Scholar 

  57. Yu JCC, Nguyen VH, Lasek J, Wu JCS (2017) Titania nanosheet photocatalysts with dominantly exposed (001) reactive facets for photocatalytic NOx abatement. Appl Catal B Environ 219:391–400

    Google Scholar 

  58. Huang HW, Xiao K, He Y, Zhang TR, Dong F, Du X, Zhang YH (2016) In situ assembly of BiOI@Bi12O17Cl2p-n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI 001 active facets for robust and nonselective photocatalysis. Appl Catal B Environ 199:75–86

    Google Scholar 

  59. Yu X, Zhao ZH, Zhang J, Guo WB, Li LL, Zhong HL et al (2017) One-step synthesis of ultrathin nanobelts-assembled urchin-like anatase TiO2 nanostructures for highly efficient photocatalysis. CrystEngComm 19:129–136

    Google Scholar 

  60. Miao Y, Zhang HJ, Yuan S, Jiao Z, Zhu XD (2016) Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. J Colloid Interface Sci 462:9–18

    Google Scholar 

  61. Yang YX, Geng L, Guo YH, Guo YG (2017) Morphology evolution and excellent visible-light photocatalytic activity of BiOBr hollow microspheres. J Chem Technol Biol 92:1236–1247

    Google Scholar 

  62. Natarajan TS, Bajaj HC, Tayade RJ (2015) Synthesis of homogeneous sphere-like Bi2WO6 nanostructure by silica protected calcination with high visible-light-driven photocatalytic activity under direct sunlight. CrystEngComm 17:1037–1049

    Google Scholar 

  63. Yang LL, Han QF, Zhu JW, Wang X (2015) Synthesis of egg-tart shaped Bi2O2CO3 hierarchical nanostructures from single precursor and its photocatalytic performance. Mater Lett 138:235–237

    Google Scholar 

  64. Mane GP, Talapaneni SN, Lakhi KS, Ilbeygi H, Ravon U, Al-Bahily K (2017) Highly ordered nitrogen-rich mesoporous carbon nitrides and their superior performance for Sensing and photocatalytic hydrogen generation. Angew Chem Int Ed 56:8481–8485

    Google Scholar 

  65. Dong WY, Yao WY, Li L, Sun YJ, Hua WM, Zhuang GS et al (2017) Three-dimensional interconnected mesoporous anatase TiO2 exhibiting unique photocatalytic performances. Appl Catal B Environ 217:293–302

    Google Scholar 

  66. Li HJ, Zhou Y, Tu WG, Ye JH, Zou ZG (2015) State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater 25:998–1013

    Google Scholar 

  67. Ruzimuradov O, Hojamberdiev M, RalfRiedel CF (2017) Fabrication of lanthanum and nitrogen-C-doped SrTiO3 -TiO2 heterostructured macroporous monolithic materials for photocatalytic degradation of organic dyes under visible light. J Alloys Compd 699:144–150

    Google Scholar 

  68. Bashiri R, Mohamed MN, Kait CF, Sufian S, Khatani M (2017) Enhanced hydrogen production over incorporated Cu and Ni into titania photocatalyst in glycerol-based photoelectrochemical cell: effect of total metal loading and calcination temperature. Int J Hydrogen Energy 42:9553–9566

    Google Scholar 

  69. Zhu YX, Wan T, Wen XM, Chu DW, Jiang YJ (2019) Tunable type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production. Appl Catal B Environ 244:814–822

    Google Scholar 

  70. Nakada A, Nishioka S, Vequizo JJM, Muraoka K, Kanazawa K, Yamakata A et al (2017) Solar-driven Z-scheme water splitting using tantalum/nitrogen co-doped rutile titania nanorod as an oxygen evolution photocatalyst. J Mater Chem A 5:11710–11719

    Google Scholar 

  71. Kumar R, Das D, Singh AK (2018) C2N/WS2 van der Waals type-II heterostructure as a promising water splitting photocatalyst. J Catal 359:143–150

    Google Scholar 

  72. Zeng XK, Wang ZY, Wang G, Gengenbach TR, McCarthy DT, Deletic A et al (2016) Synthesis and high visible-light activity of novel Bi2O3/FeVO4 heterojunction photocatalysts. Mater Lett 164:229–231

    Google Scholar 

  73. Zhang J, Ma HP, Liu ZF (2017) Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting. Appl Catal B Environ 201:84–91

    Google Scholar 

  74. Zhou XJ, Shao CL, Li XH, Wang XX, Guo XH, Liu YC (2018) Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J Hazar Mater 344:113–122

    Google Scholar 

  75. Chen L, Hua H, Yang Q, Hu CG (2015) Visible-light photocatalytic activity of Ag2O coated Bi2WO6 hierarchical microspheres assembled by nanosheets. Appl Surf Sci 327:62–67

    Google Scholar 

  76. Hao RR, Wang GH, Tang H, Sun LL, Xu C, Han DY (2016) Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl Catal B Environ 187:47–58

    Google Scholar 

  77. Nelson N, Mazor Y, Toporik H, Borovikova A, Greenberg I, Nataf D (2014) Crystal structure of synechocystis mutants and plant photosystem I. Biophys J 106:369a–370a

    Google Scholar 

  78. Li HJ, Tu WG, Zho Y, Zou ZG (2016) Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges. Adv Sci 3:1500389

    Google Scholar 

  79. Iwase Y, Tomita O, Naito H, Higashi M, Abe R (2018) Molybdenum-substituted polyoxometalate as stable shuttle redox mediator for visible light driven Z-scheme water splitting system. J Photochem Photobiol A Chem 356:347–354

    Google Scholar 

  80. Li HJ, Zhou Y, Tu WG, Ye JH, Zou ZG (2015) State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater 25:998–1013

    Google Scholar 

  81. Chandran RB, Breen S, Shao YX, Ardo S (2018) Evaluating particle-suspension reactor designs for Z-scheme solar water splitting via transport and kinetic modeling. Energy Environ Sci 11:115–135

    Google Scholar 

  82. Jiang ZF, Wan WM, Li HM, Yuan SQ, Zhao HJ (2018) A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhance photocatalytic CO2 reduction. Adv Mater 30:1706108

    Google Scholar 

  83. Low JX, Jiang CJ, Cheng B, Wageh S, Al-Ghamdi AA, Yu JG (2017) A review of direct Z-scheme photocatalysts. Small Methods 1:1700080

    Google Scholar 

  84. Miao XL, Shen SP, Wu JJ, Ji ZY, Wang JH, Kong LR et al (2017) Fabrication of an all solid Z-scheme photocatalyst g-C3N4/GO/AgBr with enhanced visible light photocatalytic activity. Appl Catal A Gen 539:104–113

    Google Scholar 

  85. Zhou FQ, Fan JC, Xu QJ, Min YL (2017) BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Appl Catal B Environ 201:77–83

    Google Scholar 

  86. Xiao TT, Tang Z, Yang Y, Tang LQ, Zhou Y, Zou ZG et al (2018) In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Appl Catal B Environ 220:417–428

    Google Scholar 

  87. Wu Y, Wang H, Tu WG, Liu Y, Tan YZ, Yuan XZ et al (2018) Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. J Hazardo Mater 347:412–422

    Google Scholar 

  88. Zhu BC, Xia PF, Li Y, Ho WK, Yu JG (2018) Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl Surf Sci 391:175–183

    Google Scholar 

  89. Yuan YJ, Chen DQ, Yang SH, Yang LX, Wang JJ, Cao DP et al (2017) Constructing noble-metal-free Z-scheme photocatalytic overall water splitting systems using MoS2 nanosheet modified CdS as a H2 evolution photocatalyst. J Mater Chem A 5:21205–21213

    Google Scholar 

  90. Tu WG, Zhou Y, Feng SC, Xu QF, Li P, Wang XY et al (2015) Hollow spheres consisting of Ti0.91O2/CdS nanohybrids for CO2 photofixation. Chem Commun 51:13354

    Google Scholar 

  91. Wu FJ, Li X, Liu W, Zhang ST (2017) Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl Surf Sci 405:60–70

    Google Scholar 

  92. Liang SJ, Han B, Liu XM, Chen WY, Peng M, Guan GJ et al (2018) 3D spatially branched hierarchical Z-scheme CdS-Au nanoclusters-ZnO hybrids with boosted photocatalytic hydrogen evolution. J Alloys Compd 754:105–113

    Google Scholar 

  93. Zhang CX, Yu K, Feng YJ, Chang Y, Yang T, Xuan Y et al (2017) Novel 3DOM-SrTiO3/Ag/Ag3PO4 ternary Z-scheme photocatalysts with remarkably improved activity and durability for contaminant degradation. Appl Catal B Environ 210:77–87

    Google Scholar 

  94. Ou M, Wan SP, Zhong Q, Zhang SL, Song Y, Guo LN et al (2018) Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4(040) with enhanced visible-light-induced photocatalytic oxidation performance. Appl Catal B Environ 221:97–107

    Google Scholar 

  95. Zeng XK, Wang ZY, Wang G, Gengenbach TR, McCarthy DT, Deletic A et al (2017) Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Appl Catal B Environ 218:163–173

    Google Scholar 

  96. Lin WH, Cao E, Zhang LQ, Xu XF, Song YZ, Liang WJ et al (2018) Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid. Nanoscale 10:5482–5488

    Google Scholar 

  97. Beane G, Brown BS, Johns P, Devkota TH (2018) Strong exciton-plasmon coupling in silver nanowire nanocavities. J Phys Chem Lett 7:1676–1681

    Google Scholar 

  98. Llorente VB, Dzhagan VM, Gaponik N, Iglesias RA, Dietrich RT, Lesnyak V (2017) Electrochemical tuning of localized surface plasmon resonance in copper chalcogenide nanocrystals. J Phys Chem C 121:18244–18253

    Google Scholar 

  99. Wang D, Wang WJ, Wang Q, Guo ZG, Yuan WX (2017) Spatial separation of Pt and IrO2 cocatalysts on SiC surface for enhanced photocatalysis. Mater Lett 201:114–117

    Google Scholar 

  100. Arslan O, Topuz F, Eren H, Biyikli N, Uyar T (2017) Pd nanocube decoration onto flexible nanofibrous mats of core-shell polymer-ZnO nanofibers for visible light photocatalysis. New J Chem 41:4145–4156

    Google Scholar 

  101. Leong KH, Aziz AA, Sim LC, Saravanan P, Jang M, Bahnemann D (2018) Mechanistic insights into plasmonic photocatalysts in utilizing visible light. Beilstein J Nanotechnol 9:628–648

    Google Scholar 

  102. Lee JE, Bera SP, Choi YS, Lee WI (2017) Size-dependent plasmonic effects of M and M@ SiO2 (M = Au or Ag) deposited on TiO2 in photocatalytic oxidation reactions. Appl Catal B Environ 214:15–22

    Google Scholar 

  103. Zhang GW, Miao H, Hu XY, Mu JL, Liu XX, Han TX et al (2017) A facile strategy to fabricate Au/TiO2 nanotubes photoelectrode with excellent photoelectro catalytic properties. Appl Surf Sci 391:345–352

    Google Scholar 

  104. Liu JL, Zhang CL, Ma B, Yang T, Gu X, Wang Xue (2017) Rational design of photoelectron-trapped/accumulated site and transportation path for superior photocatalyst. Nano Energy 38:271–280

    Google Scholar 

  105. Zhang XG, Ke XB, Yao JF (2018) Recent development of plasmon-mediated photocatalysts and their potential in selectivity regulation. J Mater Chem A 6:1941–1966

    Google Scholar 

  106. Zhang XM, Chen YL, Liu R, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76:046401

    Google Scholar 

  107. Matthews JR, Payne CM, Hafner JH (2015) Analysis of phospholipid bilayers on gold nanorods by plasmon resonance sensing and surface-enhanced raman scattering. Langmuir 31:9893–9900

    Google Scholar 

  108. Wang DD, Ge CW, Wu GA, Li ZP, Wang JZ, Zhang TF et al (2017) A sensitive red light nano-photodetector propelled by plasmonic copper nanoparticles. J Mater Chem C 5:1328–1335

    Google Scholar 

  109. Reineck P, Brick D, Mulvaney P, Bach U (2016) Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency. J Phys Chem Lett 20:4137–4141

    Google Scholar 

  110. Li K, Hogan NJ, Kale M, Halas NJ, Nordlander P, Christopher P (2017) Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis. Nano Lett 17:3710–3717

    Google Scholar 

  111. Song H, Meng XG, Dao TD, Zhou W, Liu HM, Shi L et al (2018) Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of Pt and Au nanoparticles. ACS Appl Mater Interfaces 10:408–416

    Google Scholar 

  112. Li XW, Sun YJ, Xiong T, Jiang GM, Zhang YX, Wu ZB, Dong F (2017) Activation of amorphous bismuth oxide via plasmonic Bi metal for efficient visible-light photocatalysis. J Catal 352:102–112

    Google Scholar 

  113. Zhao ZW, Zhang WD, Lv XS, Sun YJ, Dong F, Zhang YX (2016) Noble metal-free Bi nanoparticles supported on TiO2 with plasmon-enhanced visible light photocatalytic air purification. Environ Sci Nano 3:1306–1317

    Google Scholar 

  114. Sun YJ, Zhao ZW, Zhang WD, Gao CF, Zhang YX, Dong F (2017) Plasmonic Bi metal as cocatalyst and photocatalyst: the case of Bi/(BiO)2CO3 and Bi particles. J Colloid Interface Sci 485:1–10

    Google Scholar 

  115. Zhang XG, Ke XB, Yao JF (2018) Recent development of plasmon-mediated photocatalysts and their potential in selectivity regulation. J Mater Chem A 6:1941–1966

    Google Scholar 

  116. Zhang PY, Wang TT, Zeng HP (2017) Design of Cu-Cu2O/g-C3N4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization. Appl Surf Sci 391:404–414

    Google Scholar 

  117. Lv DD, Zhang DF, Pu XP, Kong DZ, Lu ZH, Shao X et al (2017) One-pot combustion synthesis of BiVO4/BiOCl composites with enhanced visible-light photocatalytic properties. Sep Purif Technol 174:97–103

    Google Scholar 

  118. Zhao HP, Zhang YF, Li GF, Tian F, Tang H, Chen R (2016) Rhodamine B-sensitized BiOCl hierarchical nanostructure for methyl orange photodegradation. RSC Adv 6:7772–7779

    Google Scholar 

  119. Yu LF, Zhang SM, Zhang M, Chen JD (2017) Superhydrophobicity construction with dye-sensitised TiO2 on fabric surface for both oil/water separation and water bulk contaminants purification. Appl Surf Sci 425:46–55

    Google Scholar 

  120. Aslan E, Gonce MK, Yigit MZ, Sarilmaz A, Stathatos E, Ozel F (2017) Photocatalytic H2 evolution with a Cu2WS4 catalyst on a metal free D-π-A organic dye-sensitized TiO2. Appl Catal B Environ 210:320–327

    Google Scholar 

  121. Gao C, Chen SM, Wang Y, Wang JW, Zheng SH, Zhu JF et al (2018) Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the ole of electron transfer. Adv Mater 30:1704624

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Nature Science Foundation of China (NSFC) (21703022), Science and Technology Research Project of Chongqing Municipal Education Commission of China (KJ1400607, KJ1401206), Natural Science Foundation of Chongqing (NSFCQ) (cstc2015jcyjA20020, cstc2014jcyjA20020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiling Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, C. Recent advances in structure design for enhancing photocatalysis. J Mater Sci 54, 8831–8851 (2019). https://doi.org/10.1007/s10853-019-03417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03417-8

Navigation