Journal of Materials Science

, Volume 54, Issue 8, pp 6709–6718 | Cite as

Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water

  • Jie Wei
  • Zhixing Yang
  • Yun Sun
  • Changkai Wang
  • Jilong Fan
  • Guoyin Kang
  • Rong Zhang
  • Xiaoying DongEmail author
  • Yongfeng LiEmail author


Heavy metal pollution is one of the most serious environmental problems, posing threats to human health. Here, we developed a magnetic hybrid aerogel by integrating nanocellulose and ferroferric oxide (Fe3O4) nanoparticles for effectively adsorbing heavy metal ions from water and realizing controllable recovery under magnetic condition. The magnetic behavior and adsorbing capacity of the hybrid aerogel on removal of heavy metal chromium (Cr)(VI) ion were examined. Results show that the ferroferric oxide nanoparticles physically adsorb the nanocellulose, each of which retains the original composition and structural characteristics. The magnetic hybrid aerogel possesses good ferromagnetic property with saturation magnetization value of 53.69 emu/g, enabling effective and controllable recovery of the aerogel under magnetic condition The adsorption efficiency of the hybrid aerogel on the Cr(VI) ion reaches the highest value of 2.2 mg/g when the mass ratio of the nanocellulose to ferroferric oxide nanoparticle is 1:1. Additionally, the hybrid aerogel presents similar adsorption behavior on plumbum (Pb)(II) and copper (Cu)(II) ions, suggesting extended applications of the hybrid aerogel on removal of heavy metal ions. Such strategy could provide new applications for the abundant nanocellulose resources and could be extended to integrate nanocellulose with other functional nanomaterials into novel hybrid aerogel for water purification.



We acknowledge the financial supports from the Natural Science Foundation of Shandong Province, Doctoral Branch (Grant No. ZR2017BC042), the Forestry Science and Technology Innovation Project of Shandong Province (Grant No. LYCX10-2018-50), the Key Special Foundation for the National Key Research and Development Program of China (Grant No. 2016YFD0600704) and the National Natural Science Foundation of China (Grant Nos. 31700497, 31300479).

Author contributions

JW, ZY, XD and YL designed the experiment. JW, ZY, YS, CW and JF performed the whole experiments. JW and YS drew the figures. GK and RZ carried out the evaluation of magnetic properties of the aerogels. JW, XD and YL wrote the paper. Everybody comments on the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_3322_MOESM1_ESM.doc (4.2 mb)
Supplementary material 1 (DOC 4323 kb)
10853_2019_3322_MOESM2_ESM.mp4 (2.7 mb)
Supplementary material 2 (MP4 2726 kb)


  1. 1.
    Wang Q, Yang ZM (2016) Industrial water pollution, water environment treatment, and health risks in China. Environ Pollut 218:358–365CrossRefGoogle Scholar
  2. 2.
    Li QY, Zhou DD, Zhang PL, Man P, Tian ZB, Li Y, Ai SY (2016) The BiOBr/regenerated cellulose composite film as a green catalyst for light degradation of phenol. Colloid Surface Physicochem Eng Aspect 501:132–137CrossRefGoogle Scholar
  3. 3.
    Wang JL, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226CrossRefGoogle Scholar
  4. 4.
    Bao LJ, Maruya KA, Snyder SA, Zeng EY (2012) China’s water pollution by persistent organic pollutants. Environ Pollut 163:100–108CrossRefGoogle Scholar
  5. 5.
    Sun JC, Fan H, Nan B, Ai SY (2014) Fe3O4@LDH@Ag/Ag3PO4 submicrosphere as a magnetically separable visible-light photocatalyst. Sep Purif Technol 130:84–90CrossRefGoogle Scholar
  6. 6.
    Jiang WJ, Wu LN, Duan JL, Yin HS, Ai SY (2018) Ultrasensitive electrochemiluminescence immunosensor for 5-hydroxymethylcytosine detection based on Fe3O4@SiO2 nanoparticles and PAMAM dendrimers. Biosens Bioelectron 99:660–666CrossRefGoogle Scholar
  7. 7.
    Shen LL, Zhang GR, Li W, Biesalski M, Etzold BJM (2017) Modifier-free microfluidic electrochemical sensor for heavy-metal detection. ACS Omega 2(8):4593–4603CrossRefGoogle Scholar
  8. 8.
    Cao CY, Cui ZM, Chen CQ, Song WG, Cai W (2010) Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J Phys Chem C 114(21):9865–9870CrossRefGoogle Scholar
  9. 9.
    Phoebe ZR, Heather JS (2015) Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Adv 5:29885–29907CrossRefGoogle Scholar
  10. 10.
    Wang XQ, Liu WX, Tian J, Zhao ZH, Hao P, Kang XL, Sang YH, Liu H (2014) Cr(VI), Pb(II), Cd(II) adsorption properties of nanostructured BiOBr microspheres and their application in a continuous filtering removal device for heavy metal ions. J Mater Chem A 2:2599–2608CrossRefGoogle Scholar
  11. 11.
    Mercy RB, Siddulu NT, Stalin J, Kavitha R, Gurwinder S, Jessica S, Ugo R, Khalid AB, Ajayan V (2018) Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem Soc Rev 47:2680–2721CrossRefGoogle Scholar
  12. 12.
    Chen CJ, Song JW, Zhu SZ, Li YJ, Kuang YD, Wan JY, Kirsch D, Xu LS, Wang YB, Gao TT, Wang YL, Huang H, Gan WT, Gong A, Li T, Xie J, Hu LB (2018) Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem 4(3):544–554CrossRefGoogle Scholar
  13. 13.
    Yin K, Yang S, Dong XR, Chu DK, Duan JA, He J (2018) Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles. Appl Phys Lett 112(24):243701. CrossRefGoogle Scholar
  14. 14.
    Yin K, Chu DK, Dong XR, Wang C, Duan JA, He J (2017) Femtosecond laser induced robust periodic nanoripples structured mesh for highly efficient oil–water separation. Nanoscale 9:14229–14235CrossRefGoogle Scholar
  15. 15.
    Kabiri S, Tran DNH, Azari S, Losic D (2015) Graphene-diatom silica aerogels for efficient removal of mercury ions from water. ACS Appl Mater Interfaces 7(22):11815–11823CrossRefGoogle Scholar
  16. 16.
    Fu JJ, He CX, Wang SQ, Chen YS (2018) A thermally stable and hydrophobic composite aerogel made from cellulose nanofibril aerogel impregnated with silica particles. J Mater Sci 53(9):7072–7082. CrossRefGoogle Scholar
  17. 17.
    Jiang F, Liu H, Li YJ, Kuang YD, Xu X, Chen CJ, Huang H, Jia C, Zhao XP, Hitz E, Zhou YB, Yang RG, Cui LF, Hu LB (2018) Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl Mater Interfaces 10(1):1104–1112CrossRefGoogle Scholar
  18. 18.
    Chavan AA, Li HB, Scarpellini A, Marras Sergio, Manna L, Athanassiou A, Fragouli D (2015) Elastomeric nanocomposite foams for the removal of heavy metal ions from water. ACS Appl Mater Interfaces 7(27):14778–14784CrossRefGoogle Scholar
  19. 19.
    Gu XY, Yang Y, Hu Y, Hu M, Wang CY (2015) Fabrication of graphene-based xerogels for removal of heavy metal ions and capacitive deionization. ACS Sustain Chem Eng 3(6):1056–1065CrossRefGoogle Scholar
  20. 20.
    Lamymendes A, Rui FS, Durães L (2018) Advances in carbon nanostructure-silica aerogel composites: a review. J Mater Chem A 6:1340–1369CrossRefGoogle Scholar
  21. 21.
    Zhu HL, Luo W, Ciesielski PN, Fang ZQ, Zhu JY, Henriksson G, Himmel ME, Hu LB (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374CrossRefGoogle Scholar
  22. 22.
    Santos SM, Carbajo JM, Gómez N, Ladero M, Villar JC (2017) Paper reinforcing by in situ growth of bacterial cellulose. J Mater Sci 52(10):5882–5893. CrossRefGoogle Scholar
  23. 23.
    Tian Zhengbin, Zong Lei, Niu Rujie, Wang Xiao, Li Yan, Ai Shiyun (2015) Recovery and characterization of lignin from alkaline straw pulping black liquor: as feedstock for bio-oil research. J Appl Polym Sci 132:42057–42065CrossRefGoogle Scholar
  24. 24.
    Yue YY, Han JQ, Han GP, Aita GM, Wu QL (2015) Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind Crops Prod 76:355–363CrossRefGoogle Scholar
  25. 25.
    Nair SS, Kuo PY, Chen HY, Yan N (2017) Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Ind Crops Prod 100:208–217CrossRefGoogle Scholar
  26. 26.
    Zhuo X, Liu C, Pan RT, Dong XY, Li YF (2017) Nanocellulose mechanically isolated from Amorpha fruticosa Linn. ACS Sustain Chem Eng 5(5):4414–4420CrossRefGoogle Scholar
  27. 27.
    Zhuo X, Wei J, Xu JF, Pan RT, Zhang G, Guo YL, Dong XY, Long L, Li YF (2017) Nanocellulose isolation from Amorpha fruticosa by an enzyme-assisted pretreatment. Appl Environ Biotech 2:34–39CrossRefGoogle Scholar
  28. 28.
    Huang JD, Wang SQ, Lyu SY, Fu F (2018) Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil–water separation only by spraying. Ind Crops Prod 122:438–447CrossRefGoogle Scholar
  29. 29.
    Zhang XT, Jing SS, Chen ZH, Zhong LX, Liu QZ, Peng XW, Sun RC (2017) Fabricating 3D hierarchical porous TiO2 and SiO2 with high specific surface area by using nanofibril-interconnected cellulose aerogel as a new biotemplate. Ind Crops Prod 109:790–802CrossRefGoogle Scholar
  30. 30.
    Chen CJ, Hu LB (2018) Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc Chem Res. Google Scholar
  31. 31.
    Osorio DA, Seifried B, Moquin P, Grandfield K, Cranston ED (2018) Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing. J Mater Sci 53(13):9842–9860. CrossRefGoogle Scholar
  32. 32.
    Zhu H, Yang X, Cranston ED, Zhu SP (2016) Flexible and porous nanocellulose aerogels with high loadings of metal–organic-framework particles for separations applications. Adv Mater 28(35):7652–7657CrossRefGoogle Scholar
  33. 33.
    Geng BY, Wang Y, Wu S, Ru J, Tong CC, Chen YF, Liu HZ, Wu SC, Liu XY (2017) Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(II) ions from water. ACS Sustain Chem Eng 5(12):11715–11726CrossRefGoogle Scholar
  34. 34.
    Yao C, Wang F, Cai Z, Wang X (2016) Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions. RSC Adv 6:92648–92654CrossRefGoogle Scholar
  35. 35.
    Liu HZ, Geng BY, Chen YF, Wang HY (2017) Review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustain Chem Eng 5(1):49–66CrossRefGoogle Scholar
  36. 36.
    Shaghaleh H, Xu X, Wang S (2018) Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv 8:825–842CrossRefGoogle Scholar
  37. 37.
    Song JW, Chen CJ, Yang Z, Kuang YD, Li T, Li YJ, Huang H, Kierzewski I, Liu BY, He SM, Gao TT, Yuruker SU, Gong A, Yang B, Hu LB (2018) Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12:140–147CrossRefGoogle Scholar
  38. 38.
    An F, Li XF, Min P, Li HF, Dai Z, Yu ZZ (2018) Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 126:119–127CrossRefGoogle Scholar
  39. 39.
    Zhu Y, Zheng Y, Wang F, Wang A (2016) Fabrication of magnetic macroporous chitosan-g-poly (acrylic acid) hydrogel for removal of Cd(2+) and Pb(2.). Int J Biol Macromol 93(Part A):483–492CrossRefGoogle Scholar
  40. 40.
    Fu F, Chen R, Xiong Y (2006) Application of a novel strategy—coordination polymerization precipitation to the treatment of Cu2+-containing wastewaters. Sep Purif Technol 52(2):388–393CrossRefGoogle Scholar
  41. 41.
    Lu N, Bu YX, Luo GM (2017) Cu-wire-mediated dipyrimidine base pairs as the building blocks for conductive and magnetic Cu–DNA nanowires. J Math Chem 55(6):1301–1321CrossRefGoogle Scholar
  42. 42.
    Shang K, Sun B, Sun JC, Li J, Ai SY (2013) Poly-(3-thiopheneacetic acid) coated Fe3O4@LDHs magnetic nanospheres as a photocatalyst for the efficient photocatalytic disinfection of pathogenic bacteria under solar light irradiation. New J Chem 37:2509–2514CrossRefGoogle Scholar
  43. 43.
    Gao H, Liu Y, Zeng G, Xu W, Li Y, Xia W (2008) Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste–rice straw. J Hazard Mater 150(2):446–452CrossRefGoogle Scholar
  44. 44.
    Aliabadi M, Morshedzadeh K, Soheyli H (2006) Removal of hexavalent chromium from aqueous solution by lignocellulosic solid wastes. Int J Environ Sci Technol 3(3):321–325CrossRefGoogle Scholar
  45. 45.
    Dehghani MH, Taher MM, Bajpai AK, Heibati B, Tyagi I, Asif M, Agarwal S, Gupta VK (2015) Removal of noxious Cr(VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chem Eng J 279:344–352CrossRefGoogle Scholar
  46. 46.
    Dubey SP, Gopal K (2007) Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study. J Hazard Mater 145(3):465–470CrossRefGoogle Scholar
  47. 47.
    Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J Hazard Mater 140:60–68CrossRefGoogle Scholar
  48. 48.
    Babel S, Kurniawan TA (2004) Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54(7):951–967CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Wood Science and Engineering, Forestry CollegeShandong Agricultural UniversityTaianChina

Personalised recommendations