Skip to main content
Log in

Facile fabrication of multi-walled carbon nanotubes (MWCNTs)/α-Bi2O3 nanosheets composite with enhanced photocatalytic activity for doxycycline degradation under visible light irradiation

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, multi-walled carbon nanotubes (MWCNTs)/α-Bi2O3 nanosheets nanocomposites were firstly fabricated and used for photocatalytic degradation of doxycycline (DOX) under visible light. These nanocomposites were characterized by a series of techniques. XRD patterns illustrated α-Bi2O3 and MWCNTs/α-Bi2O3 composites were successfully synthesized. The nanotubular structure of MWCNTs and the nanosheet structure of α-Bi2O3 were determined by SEM and TEM. The compositional analysis of as-synthesized materials was obtained by XPS, and the results showed that MWCNTs and α-Bi2O3 were tightly combined. DRS spectra indicated that the introduction of MWCNTs broadened the light absorption range of the photocatalysts. The BET tests and photocatalysis experiments confirmed that the introduction of MWCNTs not only increases the specific surface area of the photocatalyst, but also increases its photocatalytic activity. When mass ratio of MWCNTs to α-Bi2O3 was 0.15, the catalyst showed the best degradation ability with 91% DOX was degraded at 120 min. The trapping experiments and electron spin resonance tests demonstrated that the ·O2 and ·OH radicals were the main reactive species in DOX degradation process. This work has prepared an economical MWCNTs/α-Bi2O3 photocatalyst by a simple solvothermal–calcination method, which has the potential application of pharmaceutical pollutants removal in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Phaechamud T, Mahadlek J, Tuntarawongsa S (2017) Peppermint oil/doxycycline hyclate-loaded Eudragit RS in situ forming gel for periodontitis treatment. J Pharm Investig 48:451–464. https://doi.org/10.1007/s40005-017-0340-x

    Article  CAS  Google Scholar 

  2. Bakhsheshi RHR, Hamzah E, Staiger MP et al (2018) Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg–Ca–TiO2 composite scaffold. Mater Des 139:212–221. https://doi.org/10.1016/j.matdes.2017.10.072

    Article  CAS  Google Scholar 

  3. Mohammad A, Yen CH, Schneider M et al (2018) Development and validation of a stability-indicating ultra-performance liquid chromatography (UPLC) method for doxycycline hyclate: an optimization of the analytical methodology for a medical countermeasure (MCM) drug. Anal Methods 10:1842–1851. https://doi.org/10.1039/c8ay00078f

    Article  CAS  Google Scholar 

  4. Lorenzetti AS, Domini CE, Lista AG (2017) A simple and new reverse liquid-liquid microextraction for the automated spectrometric determination of doxycycline in chicken fat. Food Chem 237:506–510. https://doi.org/10.1016/j.foodchem.2017.05.132

    Article  CAS  Google Scholar 

  5. Jiang D, Ma W, Xiao P, Shao L, Li D, Chen M (2018) Enhanced photocatalytic activity of graphitic carbon nitride/carbon nanotube/Bi2WO6 ternary Z-scheme heterojunction with carbon nanotube as efficient electron mediator. J Colloid Interface Sci 512:693–700. https://doi.org/10.1016/j.jcis.2017.10.074

    Article  CAS  Google Scholar 

  6. Yu H, Xu J, Liu Z, Li Y, Jin Z (2018) Functionalization of sheet structure MoS2 with CeO2–Co3O4 for efficient photocatalytic hydrogen evolution. J Mater Sci. https://doi.org/10.1007/s10853-018-2687-4

    Article  Google Scholar 

  7. Wang P, Guan Z, Li Q, Yang J (2017) Efficient visible-light-driven photocatalytic hydrogen production from water by using Eosin Y-sensitized novel g-C3N4/Pt/GO composites. J Mater Sci 53:774–786. https://doi.org/10.1007/s10853-017-1540-5

    Article  CAS  Google Scholar 

  8. Yu J, Chen Z, Wang Y et al (2018) Synthesis of KNbO3/g-C3N4 composite and its new application in photocatalytic H2 generation under visible light irradiation. J Mater Sci 53:7453–7465. https://doi.org/10.1007/s10853-018-2119-5

    Article  CAS  Google Scholar 

  9. Gopannagari M, Kumar DP, Park H et al (2018) Influence of surface-functionalized multi-walled carbon nanotubes on CdS nanohybrids for effective photocatalytic hydrogen production. Appl Catal B Environ 236:294–303. https://doi.org/10.1016/j.apcatb.2018.05.009

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhou J, Li Z, Feng Q (2017) Photodegradation pathway of rhodamine B with novel Au nanorods@ZnO microspheres driven by visible light irradiation. J Mater Sci 53:3149–3162. https://doi.org/10.1007/s10853-017-1779-x

    Article  CAS  Google Scholar 

  11. Qu LL, Wang N, Li YY, Bao DD, Yang GH, Li HT (2017) Novel titanium dioxide–graphene–activated carbon ternary nanocomposites with enhanced photocatalytic performance in rhodamine B and tetracycline hydrochloride degradation. J Mater Sci 52:8311–8320. https://doi.org/10.1007/s10853-017-1047-0

    Article  CAS  Google Scholar 

  12. Li N, Zhang J, Wang C, Sun H (2017) Enhanced photocatalytic degradation of tetrabromobisphenol A by tourmaline–TiO2 composite catalyst. J Mater Sci 52:6937–6949. https://doi.org/10.1007/s10853-017-0926-8

    Article  CAS  Google Scholar 

  13. Ji Z, Feng L, Kong L et al (2017) Synthesis of GO–AgIO4 nanocomposites with enhanced photocatalytic efficiency in the degradation of organic pollutants. J Mater Sci 52:6100–6110. https://doi.org/10.1007/s10853-017-0849-4

    Article  CAS  Google Scholar 

  14. Li Y, Ouyang S, Xu H et al (2016) Constructing solid–gas-interfacial fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm. J Am Chem Soc 138:13289–13297. https://doi.org/10.1021/jacs.6b07272

    Article  CAS  Google Scholar 

  15. Zheng X, Shen ZP, Cheng C, Shi L, Cheng R, Yuan DH (2018) Photocatalytic disinfection performance in virus and virus/bacteria system by Cu–TiO2 nanofibers under visible light. Environ Pollut 237:452–459. https://doi.org/10.1016/j.envpol.2018.02.074

    Article  CAS  Google Scholar 

  16. Pugazhendhi A, Kumar SS, Manikandan M, Saravanan M (2018) Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi. Microb Pathog 122:84–89. https://doi.org/10.1016/j.micpath.2018.06.016

    Article  CAS  Google Scholar 

  17. Ali A, Biswas MRUD, Oh WC (2018) Novel and simple process for the photocatalytic reduction of CO2 with ternary Bi2O3–graphene–ZnO nanocomposite. J Mater Sci: Mater Electron 29:10222–10233. https://doi.org/10.1007/s10854-018-9073-5

    Article  CAS  Google Scholar 

  18. Yang MQ, Weng B, Xu YJ (2014) Synthesis of In2S3–CNT nanocomposites for selective reduction under visible light. J Mater Chem A 2:1710–1720. https://doi.org/10.1039/c3ta14370h

    Article  CAS  Google Scholar 

  19. Wu K, Dong X, Zhu J et al (2018) Designing biomimetic porous celery: TiO2/ZnO nanocomposite for enhanced CO2 photoreduction. J Mater Sci 53:11595–11606. https://doi.org/10.1007/s10853-018-2397-y

    Article  CAS  Google Scholar 

  20. Ru Y, Yang L, Li Y et al (2018) Photoelectrocatalytic reduction of CO2 on titania nanotube arrays modified by Pd and RGO. J Mater Sci 53:10351–10362. https://doi.org/10.1007/s10853-018-2319-z

    Article  CAS  Google Scholar 

  21. Sha J, Zhao N, Liu E, Shi C, He C, Li J (2014) In situ synthesis of ultrathin 2-D TiO2 with high energy facets on graphene oxide for enhancing photocatalytic activity. Carbon 68:352–359. https://doi.org/10.1016/j.carbon.2013.10.087

    Article  CAS  Google Scholar 

  22. Khan MA, Mutahir S, Wang F, Lei W, Xia M (2018) Sensitization of TiO2 nanosheets with Cu–biphenylamine framework to enhance photocatalytic degradation performance of toxic organic contaminants: synthesis, mechanism and kinetic studies. Nanotechnology 29:375605. https://doi.org/10.1088/1361-6528/aacee0

    Article  Google Scholar 

  23. Jan T, Azmat S, Wahid B et al (2018) Chemically synthesized ZnO–Bi2O3 (BZO) nanocomposites with tunable optical, photoluminescence and antibacterial characteristics. Mater Sci Semicond Process 84:71–75. https://doi.org/10.1016/j.mssp.2018.05.007

    Article  CAS  Google Scholar 

  24. Mohammadian Fard Z, Bagheri M, Zavvar Mousavi H, Rabieh S (2018) Plasmonic Ag/Ag2O nanoparticles anchored needle-like Bi2O3 as an efficient visible-light-driven nanocomposite photocatalyst. Mater Res Bull 101:311–318. https://doi.org/10.1016/j.materresbull.2018.01.053

    Article  CAS  Google Scholar 

  25. Guo JG, Liu Y, Hao YJ et al (2018) Comparison of importance between separation efficiency and valence band position: the case of heterostructured Bi3O4Br/α-Bi2O3 photocatalysts. Appl Catal B Environ 224:841–853. https://doi.org/10.1016/j.apcatb.2017.11.046

    Article  CAS  Google Scholar 

  26. Bera KK, Majumdar R, Chakraborty M, Bhattacharya SK (2018) Phase control synthesis of alpha, beta and alpha/beta Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight. J Hazard Mater 352:182–191. https://doi.org/10.1016/j.jhazmat.2018.03.029

    Article  CAS  Google Scholar 

  27. Li X, Chen Z, Quan H, Shao Y, Li D (2017) Constructing photocatalyst from β-Bi2O3 photonic crystals for enhanced photocatalytic performance. J Porous Mater 25:677–685. https://doi.org/10.1007/s10934-017-0480-4

    Article  CAS  Google Scholar 

  28. Jung HJ, Park S, Kim KD, Kim TH, Choi MY, Lee KY (2018) Fabrication of porous β-Bi2O3 nanoplates by phase transformation of bismuth precursor via low-temperature thermal decomposition process and their enhanced photocatalytic activity. Colloids Surf A 550:37–45. https://doi.org/10.1016/j.colsurfa.2018.04.034

    Article  CAS  Google Scholar 

  29. Xu D, Hai Y, Zhang X, Zhang S, He R (2017) Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2. Appl Surf Sci 400:530–536. https://doi.org/10.1016/j.apsusc.2016.12.171

    Article  CAS  Google Scholar 

  30. Sudrajat H, Hartuti S, Park J (2018) A newly constructed photoactive system, Fe(III)-C/N-Bi2O3, for efficient visible light photocatalysis. J Alloys Compd 748:390–397. https://doi.org/10.1016/j.jallcom.2018.03.149

    Article  CAS  Google Scholar 

  31. Prasad N, Karthikeyan B (2018) Broad band and enhanced photocatalytic behaviour of Ho3+-doped Bi2O3 micro-rods. Appl Phys A. https://doi.org/10.1007/s00339-018-1802-3

    Article  Google Scholar 

  32. Cui Y, Zhang X, Guo R et al (2018) Construction of Bi2O3/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic performance and mechanism. Sep Purif Technol 203:301–309. https://doi.org/10.1016/j.seppur.2018.04.061

    Article  CAS  Google Scholar 

  33. Yin Y, Li F, Zhan Q, Jiang D, Chen R (2018) Synthesis of δ-Bi2O3/Bi2MoO6 composites with enhanced photocatalytic activity by hydrothermal method. Mater Res Bull 103:47–54. https://doi.org/10.1016/j.materresbull.2018.03.021

    Article  CAS  Google Scholar 

  34. Vattikuti SVP, Police AKR, Shim J, Byon C (2018) In situ fabrication of the Bi2O3–V2O5 hybrid embedded with graphitic carbon nitride nanosheets: Oxygen vacancies mediated enhanced visible-light–driven photocatalytic degradation of organic pollutants and hydrogen evolution. Appl Surf Sci 447:740–756. https://doi.org/10.1016/j.apsusc.2018.04.040

    Article  CAS  Google Scholar 

  35. Luo D, Kang Y (2018) Synthesis and characterization of novel CaFe2O4/Bi2O3 composite photocatalysts. Mater Lett 225:17–20. https://doi.org/10.1016/j.matlet.2018.04.072

    Article  CAS  Google Scholar 

  36. Jiang L, Yuan X, Zeng G et al (2018) In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl Catal B Environ 227:376–385. https://doi.org/10.1016/j.apcatb.2018.01.042

    Article  CAS  Google Scholar 

  37. Jiang HY, Liu G, Li M et al (2015) Efficient organic degradation under visible light by α-Bi2O3 with a CuOx-assistant electron transfer process. Appl Catal B Environ 163:267–276. https://doi.org/10.1016/j.apcatb.2014.07.058

    Article  CAS  Google Scholar 

  38. Tohidifar MR (2018) Highly-efficient electromagnetic interference shielding and microwave dielectric behavior of a (Bi2O3 + B2O3)-doped MWCNT/BaTiO3 ceramic nanocomposite. Ceram Int 44:13613–13622. https://doi.org/10.1016/j.ceramint.2018.04.197

    Article  CAS  Google Scholar 

  39. Mallakpour S, Nouruzi N (2018) Application of vitamin B1-coated carbon nanotubes for the production of starch nanocomposites with enhanced structural, optical, thermal and Cd(II) adsorption properties. J Polym Environ 26:2954–2963. https://doi.org/10.1007/s10924-018-1177-8

    Article  CAS  Google Scholar 

  40. Dutta AK, Ghorai UK, Chattopadhyay KK, Banerjee D (2018) Removal of textile dyes by carbon nanotubes: a comparison between adsorption and UV assisted photocatalysis. Phys E 99:6–15. https://doi.org/10.1016/j.physe.2018.01.008

    Article  CAS  Google Scholar 

  41. Vilardi G, Mpouras T, Dermatas D, Verdone N, Polydera A, Di Palma L (2018) Nanomaterials application for heavy metals recovery from polluted water: the combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling. Chemosphere 201:716–729. https://doi.org/10.1016/j.chemosphere.2018.03.032

    Article  CAS  Google Scholar 

  42. Shimizu Y, Ateia M, Yoshimura C (2018) Natural organic matter undergoes different molecular sieving by adsorption on activated carbon and carbon nanotubes. Chemosphere 203:345–352. https://doi.org/10.1016/j.chemosphere.2018.03.197

    Article  CAS  Google Scholar 

  43. Fresco CB, Mompo RO, Simo AEF, Cardenas S, Herrero MJM (2018) Carbon nanotube-modified monolithic polymethacrylate pipette tips for (micro)solid-phase extraction of antidepressants from urine samples. Microchim Acta 185:127. https://doi.org/10.1007/s00604-017-2659-4

    Article  CAS  Google Scholar 

  44. Han Z, Jiang K, Fan Z et al (2017) Multi-walled carbon nanotubes-based magnetic solid-phase extraction for the determination of zearalenone and its derivatives in maize by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Control 79:177–184. https://doi.org/10.1016/j.foodcont.2017.03.044

    Article  CAS  Google Scholar 

  45. Luo Y, Li Y, Wang D, Zhai C, Yang T, Zhang M (2018) Hierarchical α-Ni(OH)2 grown on CNTs as a promising supercapacitor electrode. J Alloys Compd 743:1–10. https://doi.org/10.1016/j.jallcom.2018.01.341

    Article  CAS  Google Scholar 

  46. Mahalingam S, Abdullah H, Manap A (2018) Role of acid-treated CNTs in chemical and electrochemical impedance study of dye-sensitised solar cell. Electrochim Acta 264:275–283. https://doi.org/10.1016/j.electacta.2018.01.138

    Article  CAS  Google Scholar 

  47. Zhao S, Guo T, Li X, Xu T, Yang B, Zhao X (2018) Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. Appl Catal B Environ 224:725–732. https://doi.org/10.1016/j.apcatb.2017.11.005

    Article  CAS  Google Scholar 

  48. Sun M, Yan T, Wu TT et al (2018) Self-assembled hierarchical Sn3O4-multi-wall carbon nanotubes: facile fabrication, promoted charge separation, and enhanced photocatalytic performances. Mater Res Bull 103:104–113. https://doi.org/10.1016/j.materresbull.2018.03.028

    Article  CAS  Google Scholar 

  49. Shi Y, Luo L, Zhang Y et al (2017) Synthesis and characterization of α/β-Bi2O3 with enhanced photocatalytic activity for 17α-ethynylestradiol. Ceram Int 43:7627–7635. https://doi.org/10.1016/j.ceramint.2017.03.057

    Article  CAS  Google Scholar 

  50. Khan MA, Xia M, Mutahir S, Muhmood T, Lei W, Wang F (2017) Encapsulating nano rods of copper-biphenylamines framework on g-C3N4 photocatalysts for visible-light-driven organic dyes degradation: promoting charge separation efficiency. Catal Sci Technol 7:3017–3026. https://doi.org/10.1039/c7cy00420f

    Article  CAS  Google Scholar 

  51. Khan MA, Mutahir S, Wang F et al (2018) Synthesis of environmentally encouraged, highly robust pollutants reduction 3-D system consisting of Ag/g-C3N4 and Cu-complex to degrade refractory pollutants. J Photochem Photobiol, A 364:826–836. https://doi.org/10.1016/j.jphotochem.2018.04.035

    Article  CAS  Google Scholar 

  52. Liu G, Li S, Lu Y, Zhang J, Feng Z, Li C (2016) Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3 → γ-Bi2O3 → α-Bi2O3 transformation in a facile precipitation method. J Alloys Compd 689:787–799. https://doi.org/10.1016/j.jallcom.2016.08.047

    Article  CAS  Google Scholar 

  53. Shi L, Ma J, Yao L, Cui L, Qi W (2018) Enhanced photocatalytic activity of Bi12O17Cl2 nano-sheets via surface modification of carbon nanotubes as electron carriers. J Colloid Interface Sci 519:1–10. https://doi.org/10.1016/j.jcis.2018.02.056

    Article  CAS  Google Scholar 

  54. Xia Y, Li Q, Wu X, Lv K, Tang D, Li M (2017) Facile synthesis of CNTs/CaIn2S4 composites with enhanced visible-light photocatalytic performance. Appl Surf Sci 391:565–571. https://doi.org/10.1016/j.apsusc.2016.06.062

    Article  CAS  Google Scholar 

  55. Wang Q, Liu E, Zhang C, Huang S, Cong Y, Zhang Y (2018) Synthesis of Cs3PMo12O40/Bi2O3 composite with highly enhanced photocatalytic activity under visible-light irradiation. J Colloid Interface Sci 516:304–311. https://doi.org/10.1016/j.jcis.2018.01.065

    Article  CAS  Google Scholar 

  56. Lee G, Ibrahim S, Kittappa S, Park H, Park CM (2018) Sonocatalytic activity of a heterostructured beta-Bi2O3/Bi2O2CO3 nanoplate in degradation of bisphenol A. Ultrason Sonochem 44:64–72. https://doi.org/10.1016/j.ultsonch.2018.02.015

    Article  CAS  Google Scholar 

  57. Qu L, Luo Z, Tang C (2013) One step synthesis of Bi@Bi2O3@carboxylate-rich carbon spheres with enhanced photocatalytic performance. Mater Res Bull 48:4601–4605. https://doi.org/10.1016/j.materresbull.2013.07.047

    Article  CAS  Google Scholar 

  58. Payan A, Fattahi M, Jorfi S, Roozbehani B, Payan S (2018) Synthesis and characterization of titanate nanotube/single-walled carbon nanotube (TNT/SWCNT) porous nanocomposite and its photocatalytic activity on 4-chlorophenol degradation under UV and solar irradiation. Appl Surf Sci 434:336–350. https://doi.org/10.1016/j.apsusc.2017.10.149

    Article  CAS  Google Scholar 

  59. Banizi ZT, Seifi M, Askari MB, Dehaghi SB, Zadeh MHR (2018) Photoluminescence and photocatalytic studies of cadmium sulfide/multiwall carbon nanotube (CdS/MWCNT) nanocomposites. Optik 158:882–892. https://doi.org/10.1016/j.ijleo.2017.12.153

    Article  CAS  Google Scholar 

  60. Shi Y, Luo L, Zhang Y et al (2017) Synthesis and characterization of porous platelet-shaped α-Bi2O3 with enhanced photocatalytic activity for 17α-ethynylestradiol. J Mater Sci 53:1049–1064. https://doi.org/10.1007/s10853-017-1553-0

    Article  CAS  Google Scholar 

  61. Ding C, Tian L, Liu B et al (2015) Facile in situ solvothermal method to synthesize MWCNT/SnIn4S8 composites with enhanced visible light photocatalytic activity. J Alloys Compd 633:300–305. https://doi.org/10.1016/j.jallcom.2015.02.020

    Article  CAS  Google Scholar 

  62. Ma S, Li Q, Cai Z, Ye Z, Zhou Y (2018) Facile fabrication of ZnO/N-doped helical carbon nanotubes composites with enhanced photocatalytic activity toward organic pollutant degradation. Appl Organomet Chem 32:e3966. https://doi.org/10.1002/aoc.3966

    Article  CAS  Google Scholar 

  63. Shaban M, Ashraf AM, Abukhadra MR (2018) TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application. Sci Rep 8:781. https://doi.org/10.1038/s41598-018-19172-w

    Article  CAS  Google Scholar 

  64. Chaudhary D, Singh S, Vankar VD, Khare N (2018) ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting. J Photochem Photobiol, A 351:154–161. https://doi.org/10.1016/j.jphotochem.2017.10.018

    Article  CAS  Google Scholar 

  65. Zhao G, Zhang D, Yu J, Xie Y, Hu W, Jiao F (2017) Multi-walled carbon nanotubes modified Bi2S3 microspheres for enhanced photocatalytic decomposition efficiency. Ceram Int 43:15080–15088. https://doi.org/10.1016/j.ceramint.2017.08.036

    Article  CAS  Google Scholar 

  66. Di J, Ji M, Xia J et al (2016) Bi4O5Br 2 ultrasmall nanosheets in situ strong coupling to MWCNT and improved photocatalytic activity for tetracycline hydrochloride degradation. J Mol Catal A: Chem 424:331–341. https://doi.org/10.1016/j.molcata.2016.08.029

    Article  CAS  Google Scholar 

  67. Zhou T, Fu S, Ma L, Gan M, Wang H, Hao C (2017) Conjugated system in metal-free 1D polyaniline nanotubes/carbon nitride hollow composites with strong adsorption and enhanced visible-light photocatalytic activities. J Mater Sci: Mater Electron 29:4266–4275. https://doi.org/10.1007/s10854-017-8373-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21277108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiabin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhou, J. & Zhou, J. Facile fabrication of multi-walled carbon nanotubes (MWCNTs)/α-Bi2O3 nanosheets composite with enhanced photocatalytic activity for doxycycline degradation under visible light irradiation. J Mater Sci 54, 3294–3308 (2019). https://doi.org/10.1007/s10853-018-3090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3090-x

Keywords

Navigation