Skip to main content
Log in

Flexible photodetector based on cotton coated with reduced graphene oxide and sulfur and nitrogen co-doped graphene quantum dots

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Here, we demonstrate a high-performance flexible photodetector based on S and N co-doped graphene quantum dots (S,N-GQDs)-modified reduced graphene oxide (rGO) film for wearable applications. To fabricate the hybrid photodetector, S,N-GQDs are simply sprayed on rGO-coated cotton substrate that is fabricated through a vacuum filtration process. Owing to the synergistic effect of S, N-GQDs and rGO, high responsivity (0.2–1.25 A W−1) and detectivity (3.86 × 1010 J) at a low operating voltage are achieved in the broad spectral range from UV to near infrared. The underlying mechanism is attributed to the separation of photogenerated electrons and holes due to the charge transfer caused by the appropriate band between S,N-GQDs and rGO. Furthermore, the large absorptivity of S,N-GQDs and the excellent conductivity of the rGO also play significant roles. The attributes of flexibility, high detectivity, and sensitivity of our novel flexible photodetector indicate promising potential for future wearable optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Honda W, Harada S, Arie T, Akita S, Takei K (2014) Wearable, Human-interactive, Health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv Funct Mater 24(22):3299–3304

    Article  CAS  Google Scholar 

  2. Hou CY, Wang HZ, Zhang QH, Li YG, Zhu MF (2014) Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv Mater 26(29):5018–5024

    Article  CAS  Google Scholar 

  3. Gomathi PT, Sahatiya P, Badhulika S (2017) Large-area, flexible broadband photodetector based on ZnS-MoS2 hybrid on paper substrate. Adv Funct Mater 27(31):1701611

    Article  Google Scholar 

  4. Pang CY, Lee GY, Kim TI, Kim SM, Kim HN, Ahn SH, Suh KY (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11(9):795–801

    Article  CAS  Google Scholar 

  5. Gong S, Schwalb W, Wang YW, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng WL (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5:3132

    Article  Google Scholar 

  6. Duong HD, Rhee JI (2008) Enhancement of the sensitivity of a quantum dot-based fiber optic temperature sensor using the sol–gel technique. Sens Actuators B Chem 134(2):423–426

    Article  CAS  Google Scholar 

  7. Wang X, Gu Y, Xiong Z, Cui Z, Zhang T (2014) Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 26(9):1336–1342

    Article  CAS  Google Scholar 

  8. Yavari F, Chen ZP, Thomas AV, Ren WC, Cheng HM, Koratkar N (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1:166

    Article  Google Scholar 

  9. Li LD, Gu LL, Lou Z, Fan ZY, Shen GZ (2017) ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano 11(4):4067–4076

    Article  CAS  Google Scholar 

  10. Zhang F, Niu SM, Guo WX, Zhu G, Liu Y, Zhang XL, Wang ZL (2013) Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-shell microwire. ACS Nano 7(5):4537–4544

    Article  CAS  Google Scholar 

  11. Chen S, Teng CJ, Zhan M, Li YR, Xie D, Shi GQ (2016) A Flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite. Adv Mater 28(28):5969–5974

    Article  CAS  Google Scholar 

  12. Wu SH, Li WL, Chu B, Su ZS, Zhang F, Lee CS (2011) High performance small molecule photodetector with broad spectral response range from 200 to 900 nm. Appl Phys Lett 99(2):134

    Article  Google Scholar 

  13. Dou LT, Yang Y, You JB, Hong ZR, Chang WH, Li G, Yang Y (2014) Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun 5:5404

    Article  CAS  Google Scholar 

  14. Cai YH, Tang LB, Xiang JZ, Ji RB, Lai SK, Lau SP, Zhao J, Kong JC, Zhang K (2016) High performance ultraviolet photodetectors based on ZnO nanoflakes/PVK heterojunction. Appl Phys Lett 109(7):073103

    Article  Google Scholar 

  15. Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Sargent EH (2006) Ultrasensitive solution-cast quantum dot photodetectors. Nature 442(7099):180–183

    Article  CAS  Google Scholar 

  16. Fu H, Tsang SW (2012) Infrared colloidal lead chalcogenide nanocrystals: synthesis, properties, and photovoltaic applications. Nanoscale 4(7):2187–2201

    Article  CAS  Google Scholar 

  17. Mirzai H, Nordin MN, Curry RJ, Bouillard JS, Zayats AV, Green M (2014) The room temperature phosphine-free synthesis of near-infrared emitting HgSe quantum dots. J Mater Chem C 2(12):2107–2111

    Article  CAS  Google Scholar 

  18. Pan D, Towe E, Kennerly S (1998) Normal-incidence intersubband (In, Ga) As/GaAs quantum dot infrared photodetectors. Appl Phys Lett 73(14):1937–1939

    Article  CAS  Google Scholar 

  19. Guo L, Yang SH, Yang CL, Yu P, Wang JN, Ge WK, Wong GK (2000) Synthesis and characterization of poly (vinylpyrrolidone)-modified zinc oxide nanoparticles. Chem Mater 12(8):2268–2274

    Article  CAS  Google Scholar 

  20. Liu WR, Huang CH, Wu CP, Chiu YC, Yeh YT, Chen TM (2011) High efficiency and high color purity blue-emitting NaSrBO3: Ce3+ phosphor for near-UV light-emitting diodes. J Mater Chem 21(19):6869–6874

    Article  CAS  Google Scholar 

  21. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  22. Lu H, Gan XT, Jia BH, Mao D, Zhao JL (2016) Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons. Opt Lett 41(20):4743–4746

    Article  CAS  Google Scholar 

  23. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  24. Kim CH, Im HS, Cho YJ, Jung CS, Jang DM, Myung Y, Park J (2012) High-yield gas-phase laser photolysis synthesis of germanium nanocrystals for high-performance photodetectors and lithium ion batteries. J Phys Chem C 116(50):26190–26196

    Article  CAS  Google Scholar 

  25. Liu LL, Niu ZQ, Zhang L, Zhou WY, Chen XD, Xie SS (2014) Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater 26(28):4855–4862

    Article  CAS  Google Scholar 

  26. Yin ZY, Wu SX, Zhou XZ, Huang X, Zhang QC, Boey F, Zhang H (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6(2):307–312

    Article  CAS  Google Scholar 

  27. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic dirac billiard in graphene quantum dots. Science 320(5874):356–358

    Article  CAS  Google Scholar 

  28. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2005) Recent progress in processing and properties of ZnO. Prog Mater Sci 50(3):293–340

    Article  CAS  Google Scholar 

  29. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  Google Scholar 

  30. Gavgani JN, Hasani A, Nouri M, Mahyari M, Salehi A (2016) Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens Actuators B Chem 229:239–248

    Article  CAS  Google Scholar 

  31. Sumana K, Ram MY, Narayanan TN, Shelke MV, Robert VP, Ajayan M, Pillai VK (2015) Synthesis of N, F and S co-doped graphene quantum dots. Nanoscale 7:11515–11519

    Article  Google Scholar 

  32. Dong HF, Gao WC, Yan F, Ji HX, Ju HX (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511–5517

    Article  CAS  Google Scholar 

  33. Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093

    CAS  Google Scholar 

  34. Zrazhevskiy P, Sena M, Gao XH (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39(11):4326–4354

    Article  CAS  Google Scholar 

  35. Harris C, Kamat PV (2009) Photocatalysis with CdSe nanoparticles in confined media: mapping charge transfer events in the subpicosecond to second timescales. ACS Nano 3(3):682–690

    Article  CAS  Google Scholar 

  36. Sun D, Ban R, Zhang PH, Wu GH, Zhang JR, Zhu JJ (2013) Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-Co-doped carbon dots with tunable luminescence properties. Carbon 64:424–434

    Article  CAS  Google Scholar 

  37. Qu D, Sun ZC, Zheng M, Li J, Zhang YQ, Zhang GQ, Zhao HF, Liu XY, Xie ZG (2015) Three colors emission from S, N Co-doped graphene quantum dots for visible light H2 production and bioimaging. Adv Opt Mater 3(3):360–367

    Article  CAS  Google Scholar 

  38. Qu D, Zheng M, Du P, Zhou Y, Zhang LG, Li D, Tan HQ, Zhao Z, Xie ZG, Sun ZC (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5(24):12272–12277

    Article  CAS  Google Scholar 

  39. Gui RJ, Liu XF, Jin H, Wang ZH, Zhang FF, Xia JF, Yang M, Bia S, Xia YZ (2015) N, S co-doped graphene quantum dots from a single source precursor used for photodynamic cancer therapy under two-photon excitation. Chem Commun 51(49):10066

    Article  CAS  Google Scholar 

  40. Majumder T, Dhar S, Debnath K, Mondal SP (2017) Role of S, N co-doped graphene quantum dots as a green photosensitizer with Ag-doped ZnO nanorods for improved electrochemical solar energy conversion. Mater Res Bull 93:214–222

    Article  CAS  Google Scholar 

  41. Ding H, Wei JS, Xiong HM (2014) Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 6(22):13817–13823

    Article  CAS  Google Scholar 

  42. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  43. Pan DY, Guo L, Zhang JC, Xi C, Xue Q, Huang H, Li JH, Zhang ZW, Yu WJ, Che ZW, Li Z, Wu MG (2012) Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J Mater Chem 22(8):3314–3318

    Article  CAS  Google Scholar 

  44. Rajabi HR (2016) Photocatalytic activity of quantum dots, semiconductor photocatalysis materials. Mech Appl 17:471–489

    Google Scholar 

  45. Huang QY, Liu LB, Wang DR, Liu JJ, Huang ZF, Zheng ZJ (2016) One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics. J Mater Chem A 4(18):6802–6808

    Article  CAS  Google Scholar 

  46. Yang Z, Wang MQ, Zhao Q, Qiu HW, Li JJ, Li XM, Shao JY (2017) Dielectrophoretic-assembled single and parallel-aligned Ag nanowire–ZnO-branched nanorod heteronanowire ultraviolet photodetectors. ACS Appl Mater Interfaces 9(27):22837–22845

    Article  CAS  Google Scholar 

  47. Yu G, Liang B, Huang HT, Chen G, Liu Z, Chen D, Shen GZ (2013) Contact printing of horizontally-aligned p-type Zn3P2 nanowire arrays for rigid and flexible photodetectors. Nanotechnology 24(9):095703

    Article  Google Scholar 

  48. Dong YQ, Pang HC, Yang HB (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52(30):7800–7804

    Article  CAS  Google Scholar 

  49. Liu X, Gu LL, Zhang QP, Wu JY, Long YZ, Fan ZY (2014) All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun 5:4007

    Article  CAS  Google Scholar 

  50. Graham MW, Shi SF, Ralph DC, Park J, McEuen PL (2013) Photocurrent measurements of supercollision cooling in graphene. Nat Phys 9(2):103–108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Financial support by Natural Science Foundation of China (No. 51603037), the Shanghai Natural Science Foundation (15ZR1401200), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Program of Shanghai Academic Research Leader (16XD1400100), Science and Technology Commission of Shanghai Municipality (16JC1400700), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-03-E00055), and the Program of Introducing Talents of Discipline to Universities (No. 111-2-04). Dr. Chengyi Hou thanks the Shanghai ChenGuang Program (15CG33), the Shanghai Natural Science Foundation (16ZR1401500), the Shanghai Sailing Program (16YF1400400), and Young Elite Scientists Sponsorship Program by CAST (2017QNRC001). Cheng Luo thanks the Donghua University Master Innovation Fund Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyi Hou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Xie, H., Hou, C. et al. Flexible photodetector based on cotton coated with reduced graphene oxide and sulfur and nitrogen co-doped graphene quantum dots. J Mater Sci 54, 3242–3251 (2019). https://doi.org/10.1007/s10853-018-3088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3088-4

Keywords

Navigation