Skip to main content
Log in

Modified qHAADF method for atomic column-by-column compositional quantification of semiconductor heterostructures

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The qHAADF method allows the quantification of the composition at atomic column resolution in semiconductor materials by comparing the HAADF-STEM intensities between a region of interest to a region of the material of known composition. However, the application of this qHAADF approach requires both regions to be differentiable and included in the same micrograph at close proximity. This limits the application of this approach to certain materials and magnifications where this requirement is fulfilled. In this work, we extend the qHAADF method to analyses where the reference region is imaged in a separate micrograph. The validity of this modified method is proved by comparison to the original qHAADF approach using HAADF-STEM simulated images of the semiconductor heterostructure InSb/InAs. Additionally, the methods are applied successfully to experimental images both of a simple InSb/InAs interface and of a complex InSb/GaSb heterostructure, justifying the significance of the modified method over the original method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pennycook SJ, Rafferty B, Nellist PD (2000) Z-contrast imaging in an aberration-corrected scanning transmission electron microscope. Microsc Microanal 6:343–352

    Article  CAS  Google Scholar 

  2. Pennycook SJ, Boatner LA (1988) Chemically sensitive structure-imaging with a scanning electron microscope. Nature 336:565–567

    Article  CAS  Google Scholar 

  3. Batson PE, Dellby N, Krivanek OL (2002) Sub-ångstrom resolution using aberration corrected electron optics. Nature 418:617–620

    Article  CAS  Google Scholar 

  4. Muller DA, Nakagawa N, Ohtomo A, Grazul JA, Hwang HY (2004) Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430:657–661

    Article  CAS  Google Scholar 

  5. Mitchson G, Ditto J, Woods KN, Westover R, Page CJ, Johnson DC (2016) Application of HAADF-STEM image analysis to structure determination in rotationally disordered and amorphous multilayered films. Semicond Sci Technol 31:084003

    Article  Google Scholar 

  6. Kaiser U, Muller DA, Grazul JL, Chuvilin A, Kowasaki M (2002) Direct observation of defect-mediated cluster nucleation. Nat Mater 1:102–105

    Article  CAS  Google Scholar 

  7. Yamazaki T, Nakanishi N, Recnik A, Kawasaki M, Watanabe K, Ceh M, Shiojiri M (2004) Quantitative high-resolution HAADF-STEM analysis of inversion boundaries in Sb2O3-doped zinc oxide. Ultramicroscopy 98:305–316

    Article  CAS  Google Scholar 

  8. Anderson SC, Birkeland CR, Anstis GR, Cockayne DJH (1997) An approach to quantitative compositional profiling at near-atomic resolution using high-angle annular dark field imaging. Ultramicroscopy 69:83–103

    Article  CAS  Google Scholar 

  9. Klie RF, Zhu Y (2005) Atomic resolution STEM analysis of defects and interfaces in ceramic materials. Micron 36:219–231

    Article  CAS  Google Scholar 

  10. Klenov DO, Stemmer S (2006) Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 106:889–901

    Article  CAS  Google Scholar 

  11. Wang P, Bleloch AL, Falke M, Goodhew PJ, Ng J, Missous M (2006) Direct measurement of composition of buried quantum dots using aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 89:072111

    Article  Google Scholar 

  12. Mokkapati S, Jagadish C (2009) Review: III-V compound SC for optoelectronic devices. Mater Today 12:22–32

    Article  CAS  Google Scholar 

  13. Semenov A, Lyublinskaya OG, Solov’ev VA, Meltser BY, Ivanov SV (2007) Surface segregation of Sb atoms during molecular-beam epitaxy of InSb quantum dots in an InAs(Sb) matrix. J Cryst Growth 301–302:58–61

    Article  Google Scholar 

  14. Namazi L, Ghalamestani SG, Lehmann S, Zamani RR, Dick KA (2017) Direct nucleation, morphology and compositional tuning of InAs1-xSbx nanowires on InAs (111) B substrates. Nanotechnology 28:165601

    Article  Google Scholar 

  15. Zhang Y, Wu J, Aagesen M, Liu H (2015) Review: III-V nanowires and nanowire optoelectronic devices. J Phys D Appl Phys 48:463001

    Article  Google Scholar 

  16. Bonef B, Gérard L, Rouvière JL, Grenier A, Jouneau PH, Bellet-Amalric E, Mariette H, André R, Bougerol C (2015) Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography. Appl Phys Lett 106:051904

    Article  Google Scholar 

  17. Tey CM, Liu HY, Cullis AG, Ross IM, Hopkinson M (2005) Structural studies of a combined InAlAs-InGaAs capping layer on 1.3-µm InAs/GaAs quantum dots. J Cryst Growth 285:17–23

    Article  CAS  Google Scholar 

  18. Chery N, Ngo TH, Chauvat MP, Damilano B, Courville A, Mierry PD, Grieb T, Mehrtens T, Krause FF, Caspary KM, Schowalters M, Gil B, Rosenauer A, Ruterana P (2017) The microstructure, local indium composition and photoluminescence in green-emitting InGaN/GaN quantum wells. J Microsc 00:1–8

    Google Scholar 

  19. Groiss H, Spindlberger L, Oberhumer P, Schäffler F, Fromherz T, Grydlik M, Brehm M (2017) Photoluminescence enhancement through vertical stacking of defect-engineered Ge on Si quantum dots. Semicond Sci Technol 32:02LT01

    Article  Google Scholar 

  20. Nie JF (2017) IOP Conf Ser Mater Sci Eng 219:012005

    Article  Google Scholar 

  21. Sales DL, Guerrero E, Rodrigo JF, Galindo PL, Yáñez A, Shafi M, Khatab A, Mari RH, Henini M, Novikov S, Chisholm MF, Molina SI (2011) Distribution of bismuth atoms in epitaxial GaAsBi. Appl Phys Lett 98:101902

    Article  Google Scholar 

  22. Molina SI, Beltrán AM, Ben T, Galindo PL, Guerrero E, Taboada AG, Ripalda JM, Chisholm MF (2009) High resolution electron microscopy of GaAs capped GaSb nanostructures. Appl Phys Lett 94:043114

    Article  Google Scholar 

  23. Broek WVD, Rosenauer A, Goris B, Martinez GT, Bals S, Aert SV, Dyck DV (2012) Correction of non-linear thickness in HAADF-STEM electron tomography. Ultramicroscopy 116:8–12

    Article  Google Scholar 

  24. Rosenauer A, Gries K, Müller K, Pretorius A, Schowalter M, Avramescu A, Engl K, Lutgen S (2009) Measurement of specimen thickness and composition in AlxGa1-xN/GaN using high-angle annular dark field images. Ultramicroscopy 109:1171–1182

    Article  CAS  Google Scholar 

  25. Caspary KM, Oppermann O, Grieb T, Krause FF, Rosenauer A, Schowalter M, Mehrtens T, Beyer A, Volz K, Potapov P (2016) Material characterization by angle-resolved scanning transmission electron microscopy. Sci Rep 6:37146

    Article  Google Scholar 

  26. LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2008) Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100:206101

    Article  Google Scholar 

  27. LeBeau JM, Findlay SD, Wang X, Jacobson AJ, Allen LJ, Stemmer S (2009) High-angle scattering of fast electrons from crystals containing heavy elements: simulation and experiment. Phys Rev B 79:214110

    Article  Google Scholar 

  28. Martinez GT, Rosenauer A, Backer AD, Verbeeck J, Aert SV (2014) Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy 137:12–19

    Article  CAS  Google Scholar 

  29. Molina SI, Sales DL, Galindo PL, Fuster D, González Y, Alén B, González L, Varela M, Pennycook SJ (2009) Column-by-column compositional mapping by Z-contrast imaging. Ultramicroscopy 109:172–176

    Article  CAS  Google Scholar 

  30. Molina SI, Galindo PL, Gonzalez L, Ripalda JM, Varela M, Pennycook SJ (2010) Exploring semiconductor quantum dots and wires by high resolution electron microscopy. J Phys Conf Ser 209:012004

    Article  Google Scholar 

  31. Reyes DF, González D, Ulloa JM, Sales DL, Dominguez L, Mayoral A, Hierro A (2012) Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots. Nanoscale Res Lett 7:653

    Article  Google Scholar 

  32. Lu J, Luna E, Aoki T, Steenbergen EH, Zhang YH, Smith DJ (2016) Evaluation of Sb segregation in InAs/InAs1-xSbx type-II superlattices grown by molecular beam epitaxy. Appl Phys Lett 119:095702

    Google Scholar 

  33. Pizarro J, Galindo PL, Guerrero E, Yáñez A, Guerrero MP, Rosenauer A, Sales DL, Molina SI (2008) Simulation of high angle annular dark field scanning transmission electron microscopy images of large nanostructures. Appl Phys Lett 93:153107

    Article  Google Scholar 

  34. Molina SI, Guerrero MP, Galindo PL, Sales DL, Varela M, Pennycook SJ (2011) Calculation of integrated intensities in aberration-corrected Z-contrast images. J Electron Microsc 60:29–33

    Article  CAS  Google Scholar 

  35. Galindo PL, Kret S, Sanchez AM, Laval JY, Yáñez A, Pizarro J, Guerrero E, Ben T, Molina SI (2007) The Peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107:1186–1193

    Article  CAS  Google Scholar 

  36. Hernández-Maldonado D, Herrera M, Alonso-González P, González Y, González L, Gázquez J, Varlea M, Pennycook SJ, Guerrero-Lebrero MP, Pizarro J, Galindo PL, Molina SI (2011) Compositional analysis with atomic column spatial resolution by 5th-order aberration-corrected scanning transmission electron microscopy. Microsc Microanal 17:578–581

    Article  Google Scholar 

  37. Jones L (2016) Quantitative ADF-STEM: acquisition, analysis and interpretation. IOP Conf Ser Mater Sci Eng 109:012008

    Article  Google Scholar 

  38. MacArthur HE, MacArthur KE, Pennycook TJ, Okunishi E, D’Alfonso AJ, Lugg NR, Allen LJ, Nellist PD (2013) Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images. Ultramicroscopy 133:109–119

    Article  Google Scholar 

  39. MacArthur KE, D’Alfonso AJ, Ozkaya D, Allen LJ, Nellist PD (2015) Optimal ADF STEM imaging parameters for tilt-robust image quantification. Ultramicroscopy 156:1–8

    Article  CAS  Google Scholar 

  40. Martinez GT, Backer AD, Rosenauer A, Verbeeck J, Aert SV (2013) The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images. Micron 63:57–63

    Article  Google Scholar 

  41. Jones L, Nellist PD (2013) Identifying and correcting scan noise and drift in the scanning transmission electron microscope. Microsc Microanal 19:1050–1060

    Article  CAS  Google Scholar 

  42. Aurenhammer F (1991) Voronoi diagrams–a survey of fundamental geometric data structure. ACM Comput Surv 23:345–405

    Article  Google Scholar 

  43. Malis T, Cheng SC, Egerton RF (1988) EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8:193–200

    Article  CAS  Google Scholar 

  44. Wiener N (1949) Extrapolation, interpolation and smoothing of stationary time series. Wiley, New York

    Google Scholar 

  45. Haxha V, Drouzas I, Ulloa JM, Bozkurt M, Koenraad PM, Mowbray DJ, Liu HY, Steer MJ, Hopkinson M, Migliorato MA (2009) Role of segregation in InAs/GaAs quantum dot structures capped with a GaAsSb strain–reduction layer. Phys Rev B 80:165334

    Article  Google Scholar 

  46. Carrington PJ, Solov’ev VA, Zhuang Q, Krier A, Ivanov SV (2008) Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes. Appl Phys Lett 93:091101

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by European Union (UE) (postgraduate research on dilute metamorphic nanostructures and metamaterials in semiconductor photonics (PROMIS) Horizon 2020 initial training network (ITN) project), Spanish MINECO (Projects TEC2014-53727-C2-2-R and TEC2017-86102-C2-2-R) and the Junta de Andalucía (PAI research groups TEP-946 INNANOMAT and TIC-145). Cofinancing from UE-FEDER is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atif A. Khan.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A., Herrera, M., Pizarro, J. et al. Modified qHAADF method for atomic column-by-column compositional quantification of semiconductor heterostructures. J Mater Sci 54, 3230–3241 (2019). https://doi.org/10.1007/s10853-018-3073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3073-y

Keywords

Navigation