Skip to main content

Advertisement

Log in

Preparation of high-performance polyimide fibers via a partial pre-imidization process

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, a series of polyimide fibers (PI) based on 3,3′,4,4′-biphenyltetracarboxylic anhydride (BPDA)/p-phenylenediamine (PDA) were prepared through a partial pre-imidization process, and the properties of these fibers were investigated in detail. The pre-imidization degree (pre-ID) was successfully controlled by adjusting the amount of dehydration reagents, which was confirmed by Fourier Transform Infrared. The scanning electron microscope images show that the addition of dehydration reagents in the poly(amic acid) spinning dope improves the shaping of the precursor fibers, which is related to the thermodynamic phase separation in the coagulation bath. The WAXD patterns indicate that the formed partial rigid-rod and oriented PI chains in the pre-imidization process are beneficial for forming a more ordered and regular crystalline structure in the post-heat-drawing process, thus improving their mechanical properties, which exhibit an optimum tensile strength and modulus of 1.7 GPa and 95.0 GPa, respectively. Meanwhile, the prepared PI fibers exhibit excellent thermal stabilities with the 5 wt% (T5%) weight loss temperature ranging from 530 to 568 °C depending on the pre-imidization degree. This work provides a simple and facile approach to preparing high-performance PI fibers through the partial pre-imidization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Cheng S, Wu Z, Mark E (1991) A high-performance aromatic polyimide fibre: 1. Structure properties and mechanical-history dependence. Polymer 32(10):1803–1810. https://doi.org/10.1016/0032-3861(91)90367-R

    Article  CAS  Google Scholar 

  2. Zhang Q, Luo W, Gao L, Chen D, Ding M (2004) Thermal mechanical and dynamic mechanical property of biphenyl polyimide fibers. J Appl Polym Sci 92(3):1653–1657. https://doi.org/10.1002/app.20110

    Article  CAS  Google Scholar 

  3. Eashoo M, Shen D, Wu Z, Lee C, Harris F, Cheng S (1993) High-performance aromatic polyimide fibres: 2. Thermal mechanical and dynamic properties. Polymer 34(15):3209–3215. https://doi.org/10.1016/0032-3861(93)90392-N

    Article  CAS  Google Scholar 

  4. Chae H, Kumar S (2006) Rigid-rod polymeric fibers. J Appl Polym Sci 100(1):791–802. https://doi.org/10.1002/app.22680

    Article  CAS  Google Scholar 

  5. Huang S, Gao Z, Ma X, Guo H, Qiu X, Gao L (2012) Properties, morphology and structure of BPDA/PPD/TFMB polyimide fibers. Chem Res Chin Univ 28(4):752–756

    CAS  Google Scholar 

  6. Huang S, Ma X, Qiu X, Gao L (2012) Mechanical properties, morphology and structure of BPDA/PPD/OTOL polyimide fibers. Chin J Chem 29(08):863–867. http://yyhx.ciac.jl.cn/EN/10.3724/SP.J.1095.2012.00386

    Article  CAS  Google Scholar 

  7. Liaw D, Wang K, Huang Y, Lee K, Lai J, Ha C (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37(7):907–974. https://doi.org/10.1016/j.progpolymsci.2012.02.005

    Article  CAS  Google Scholar 

  8. Cheng Y, Dong J, Yang C, Wu T, Zhao X, Zhang Q (2017) Synthesis of poly (benzobisoxazole-co-imide) and fabrication of high-performance fibers. Polymer 133:50–59. https://doi.org/10.1016/j.polymer.2017.11.015

    Article  CAS  Google Scholar 

  9. Yin C, Dong J, Zhang Z, Zhang Q, Lin J (2015) Structure and properties of polyimide fibers containing benzimidazole and amide units. J Polym Sci Polym Phys 53(3):183–191. https://doi.org/10.1002/polb.23606

    Article  CAS  Google Scholar 

  10. Yin C, Dong J, Zhang D, Lin J, Zhang Q (2015) Enhanced mechanical and hydrophobic properties of polyimide fibers containing benzimidazole and benzoxazole units. Eur Polym J 67(Supplement C):88–98. https://doi.org/10.1016/j.eurpolymj.2015.03.028

    Article  CAS  Google Scholar 

  11. Luo L, Yao J, Wang X, Li K, Huang J, Li B, Wang H, Feng Y, Liu X (2014) The evolution of macromolecular packing and sudden crystallization in rigid-rod polyimide via effect of multiple H-bonding on charge transfer (CT) interactions. Polymer 55(16):4258–4269. https://doi.org/10.1016/j.poly

    Article  CAS  Google Scholar 

  12. Dong J, Fang Y, Gan F, An J, Zhao X, Zhang Q (2016) Enhanced mechanical properties of polyimide composite fibers containing amino functionalized carbon nanotubes. Compos Sci Technol 135:137–145. https://doi.org/10.1016/j.compscitech.2016.09.021mer.2014.06.080

    Article  CAS  Google Scholar 

  13. Dong R, Zhao J, Zhang Y, Pan D (2009) Morphology control of polyacrylonitrile (PAN) fibers by phase separation technique. J Polym Sci Part B Polym Phys 47(3):261–275. https://doi.org/10.1002/polb

    Article  CAS  Google Scholar 

  14. Zhang J, Zhang Y, Zhao J (2011) Thermodynamic study of non-solvent/dimethyl sulfoxide/polyacrylonitrile ternary systems: effects of the non-solvent species. Polym Bull 67(6):1073–1089. https://doi.org/10.1007/s00289-011-0525-9

    Article  CAS  Google Scholar 

  15. Fitzer E (1989) Pan-based carbon fibers-present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27(5):621–645. https://doi.org/10.1016/0008-6223(89)90197-8

    Article  Google Scholar 

  16. Park S, Farris R (2001) Dry-jet wet spinning of aromatic polyamic acid fiber using chemical imidization. Polymer 42(26):10087–10093. https://doi.org/10.1016/S0032-3861(01)00576-6

    Article  CAS  Google Scholar 

  17. Wang Y, Yang Y, Jia Z, Qin J, Gu Y (2012) Effect of pre-imidization on the aggregation structure and properties of polyimide films. Polymer 53(19):4157–4163. https://doi.org/10.1016/j.polymer.2012.07.034

    Article  CAS  Google Scholar 

  18. Chang J, Ge Q, Zhang M, Liu W, Cao L, Niu H, Wu D (2015) Effect of pre-imidization on the structures and properties of polyimide fibers. RSC Adv 5(85):69555–69566. https://doi.org/10.1039/C5RA10943D

    Article  CAS  Google Scholar 

  19. Kochi M, Uruji T, Iizuka T, Mita I, Yokota R (1987) High-modulus and high-strength polybiphenyltetracarboximide films. J Polym Sci Part C Polym Lett 25(11):441–446. https://doi.org/10.1002/pol.1987.140251103

    Article  CAS  Google Scholar 

  20. Heltzel S, Semprimoschnig C (2004) A detailed study on the thermal Endurance of Kapton HN® and Upilex S®. High Perform Polym 16(2):235–248. https://doi.org/10.1177/0954008304044100

    Article  CAS  Google Scholar 

  21. Hasegawa M, Sensui N, Shindo Y, Yokota R (1999) Improvement of thermoplasticity for s-BPDA/PDA by copolymerization and blend with novel asymmetric BPDA-based polyimides. J Polym Sci Part B Polym Phys 37(17):2499–2511. https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17%3c2499:AID-POLB21%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  22. Pryde C (1989) IR studies of polyimides. I. Effects of chemical and physical changes during cure. J Polym Sci Part A Polym Chem 27(2):711–724. https://doi.org/10.1002/pola.1989.080270229

    Article  CAS  Google Scholar 

  23. Pryde C (1993) FTIR studies of polyimides. II. Factors affecting quantitative measurement. J Polym Sci Part A Polym Chem 31(4):1045–1052. https://doi.org/10.1002/pola.1993.080310427

    Article  CAS  Google Scholar 

  24. Shin T, Ree M (2007) Thermal imidization and structural evolution of thin films of poly (4,4′-oxydiphenylene p-pyromellitamic diethyl ester). J Phys Chem B 111(50):13894–13900. https://doi.org/10.1021/jp075067o

    Article  CAS  Google Scholar 

  25. Ziabicki A (1976) Fundamentals of fiber formation: the science of fiber spinning and drawing. Wiley, New York

    Google Scholar 

  26. Bajaj P, Sreekumar T, Sen K (2002) Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. J Appl Polym Sci 86(3):773–787. https://doi.org/10.1002/app.10973

    Article  CAS  Google Scholar 

  27. Chen J, Ge H, Liu H, Li G, Wang C (2010) The coagulation process of nascent fibers in PAN wet-spinning. J Wuhan Univ Technol 25(2):200–205. https://doi.org/10.1007/s11595-010-2200-7

    Article  CAS  Google Scholar 

  28. Wijmans J, Kant J, Mulder M, Smolders C (1985) Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: relationship with membrane formation. Polymer 26(10):1539–1545. https://doi.org/10.1016/0032-3861(85)90090-4

    Article  CAS  Google Scholar 

  29. Coburn J, Pottiger M, Pryde C (1993) Structure development in polyimide films. MRS OPL 308. https://doi.org/10.1557/PROC-308-475

  30. Ree M, Kim K, Woo S, Chang H (1997) Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities. J Appl Phys 81(2):698–708. https://doi.org/10.1063/1.364210

    Article  CAS  Google Scholar 

  31. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Fundamental Research Funds for the Central Universities (2232017A-01), Shanghai Science and Technology Commission “Yangfan” Program (17YF1400500), Shanghai Science and Technology Innovation Action Plan (16JC1403600) and the Opening Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (LK1604).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Dong or Qinghua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Dong, J., Zhang, D. et al. Preparation of high-performance polyimide fibers via a partial pre-imidization process. J Mater Sci 54, 3619–3631 (2019). https://doi.org/10.1007/s10853-018-3068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3068-8

Keywords

Navigation