Skip to main content
Log in

Highly selective catalytic conversion of lignin-derived phenolic compounds to cycloalkanes over a hierarchically structured zeolite catalyst

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hierarchically structured ETS-10-supported highly dispersed Co (Co/HMETS-10) is a promising catalyst to selectively catalyse hydrodeoxygenation (HDO) of lignin-derived phenolic compounds. It is shown that almost 100% guaiacol conversion and 96.9% cyclohexane yield are achieved under mild conditions. Co/HMETS-10 exhibits much higher activity and superior reusability due to the advantageous effects of its unique framework, hierarchical structure, Lewis acid sites and Co species. The hierarchically porous structure benefits mass transfer and facilitates the combination of the reacting substrate and acid, metal sites. The characteristic shape selectivity of ETS-10 structure and moderate amount of Lewis acid lead to the high HDO selectivity. In addition, compared with Ni and Fe, Co is more inclined to function in hydrogenolysis of Caryl–OMe bond, thereby improving the catalytic performance. Further HDO experiments indicate the excellent catalytic performance and extensive applicability in selectively deep deoxygenation of various lignin model compounds for production of cycloalkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Mochizuki T, Chen SY, Toba M, Yoshimura Y (2014) Deoxygenation of guaiacol and woody tar over reduced catalysts. Appl Catal B 146:237–243

    Article  CAS  Google Scholar 

  2. Aqsha A, Lakshmi K, Nader M (2015) Catalytic hydrodeoxygenation of guaiacol as lignin model component using Ni–Mo/TiO2 and Ni–V/TiO2 catalysts. Catal Lett 145:1351–1363

    Article  CAS  Google Scholar 

  3. Ma XL, Tian Y, Hao WY, Ma R, Li YD (2014) Production of phenols from catalytic conversion of lignin over a tungsten phosphide catalyst. Appl Catal A 481:64–70

    Article  CAS  Google Scholar 

  4. Ma R, Hao WY, Ma XL, Tian Y, Li YD (2014) Catalytic ethanolysis of Kraft lignin into high-value small-molecular chemicals over a nanostructured α-molybdenum carbide catalyst. Angew Chem 126:7310–7315

    Article  Google Scholar 

  5. Barta K, Warner GR, Beach ES, Anastas PT (2014) Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides. Green Chem 16:191–196

    Article  CAS  Google Scholar 

  6. Ma R, Cui K, Yang L, Ma XL, Li YD (2015) Selective catalytic conversion of guaiacol to phenols over a molybdenum carbide catalyst. Chem Commun 51:10299–10301

    Article  CAS  Google Scholar 

  7. Zhao C, Kou Y, Lemonidou AA, Li XB, Lercher JA (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem 48:4047–4050

    Article  Google Scholar 

  8. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  9. Zhang XH, Zhang Q, Wang TJ, Ma LL, Yu YX, Chen LG (2013) Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2–ZrO2 catalysts. Bioresour Technol 134:73–80

    Article  Google Scholar 

  10. Escalona N, Aranzaez W, Leiva K, Martínez N, Pecchi G (2014) Ni nanoparticles prepared from Ce substituted LaNiO3 for the guaiacol conversion. Appl Catal A 481:1–10

    Article  CAS  Google Scholar 

  11. Chen W, Luo Z, Yu C, Yang Y, Li G, Zhang J (2014) Catalytic conversion of guaiacol in ethanol for bio-oil upgrading to stable oxygenated organics. Fuel Process Technol 126:420–428

    Article  CAS  Google Scholar 

  12. Kim JY, Park J, Kim UJ, Choi JW (2015) Conversion of lignin to phenol-rich oil fraction under supercritical alcohols in the presence of metal catalysts. Energy Fuels 29:5154–5163

    Article  CAS  Google Scholar 

  13. Kibet J, Khachatryan L, Dellinger B (2012) Molecular products and radicals from pyrolysis of lignin. Environ Sci Technol 46:12994–13001

    Article  CAS  Google Scholar 

  14. Robinson AM, Hensley JE, Medlin JW (2016) Bifunctional catalysts for upgrading of biomass-derived oxygenates: a review. ACS Catal 6:5026–5043

    Article  CAS  Google Scholar 

  15. Saber M, Golzary A, Hosseinpour M, Takahashi F, Yoshikawa K (2016) Catalytic hydrothermal liquefaction of microalgae using nanocatalyst. Appl Energy 183:566–576

    Article  CAS  Google Scholar 

  16. Barrett JA, Gao Y, Bernt CM, Chui MG, Tran AT, Foston MB, Ford PC (2016) Enhancing aromatic production from reductive lignin disassembly: in situ O-methylation of phenolic intermediates. ACS Sustain Chem Eng 4:6877–6886

    Article  CAS  Google Scholar 

  17. Schutyser W, Van den Bossche G, Raaffels A, Van den Bosch S, Koelewijn SF, Renders T, Sels BF (2016) Selective conversion of lignin-derivable 4-alkylguaiacols to 4-alkylcyclohexanols over noble and non-noble-metal catalysts. ACS Sustain Chem Eng 4:5336–5346

    Article  CAS  Google Scholar 

  18. Chen L, Korányi TI, Hensen EJM (2016) Transition metal (Ti, Mo, Nb, W) nitride catalysts for lignin depolymerisation. Chem Commun 52:9375–9378

    Article  CAS  Google Scholar 

  19. Yang YY, Fan HL, Song JL, Meng QL, Zhou HC, Wu LQ, Yang GY, Han BX (2015) Free radical reaction promoted by ionic liquid: a route for metal-free oxidation depolymerization of lignin model compound and lignin. Chem Commun 51:4028–4031

    Article  CAS  Google Scholar 

  20. Hwu HH, Chen JG (2005) Surface chemistry of transition metal carbides. Chem Rev 105:185–212

    Article  CAS  Google Scholar 

  21. Vishwanathan V, Ndou S, Sikhwivhilu L, Plint N, Raghavana KV, Coville NJ (2001) Evidence for weak base site participation in the vapour phase methylation of catechol over solid base catalysts. Chem Commun 10:893–894

    Article  Google Scholar 

  22. Lu JM, Wang M, Zhang XC, Heyden A, Wang F (2016) β-O-4 bond cleavage mechanism for lignin model compounds over Pd catalysts identified by combination of first-principles calculations and experiments. ACS Catal 6:5589–5598

    Article  CAS  Google Scholar 

  23. He J, Zhao C, Lercher JA (2012) Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J Am Chem Soc 134:20768–20775

    Article  CAS  Google Scholar 

  24. Song Q, Cai J, Zhang J, Yu W, Wang F, Xu J (2013) Hydrogenation and cleavage of the CO bonds in the lignin model compound phenethyl phenyl ether over a nickel-based catalyst. Chin J Catal 34:651–658

    Article  CAS  Google Scholar 

  25. Trana NTT, Uemuraa Y, RamliX A (2016) Hydrodeoxygenation of guaiacol over Al-MCM-41 supported metal catalysts: a comparative study of Co and Ni. Procedia Eng 148:1252–1258

    Article  Google Scholar 

  26. Koike N, Hosokai S, Takagaki A, Nishimura S, Kikuchi R, Ebitani K, Suzuki Y, OyamaH ST (2016) Upgrading of pyrolysis bio-oil using nickel phosphide catalysts. J Catal 333:115–126

    Article  CAS  Google Scholar 

  27. Zhang XH, Long JX, Kong W, Zhang Q, Chen LG, Wang TJ, Ma LL, Li YP (2014) Catalytic upgrading of bio-oil over Ni-based catalysts supported on mixed oxides. Energy Fuels 28:2562–2570

    Article  CAS  Google Scholar 

  28. Chen C, Chen G, Yang F, Wang H, Han J, Ge Q, Zhu X (2015) Vapor phase hydrodeoxygenation and hydrogenation of m-cresol on silica supported Ni, Pd and Pt catalysts. Chem Eng Sci 135:145–154

    Article  CAS  Google Scholar 

  29. Mao JB, Zhou JX, Xia Z, Wang ZG, Xu ZW, Xu WJ, Yan PF, Liu KR, Guo XW, Zhang ZC (2017) Anatase TiO2 activated by gold nanoparticles for selective hydrodeoxygenation of guaiacol to phenolics. ACS Catal 7(1):695–705

    Article  CAS  Google Scholar 

  30. Foo GS, Rogers AK, Yung MM, Sievers C (2016) Steric effect and evolution of surface species in the hydrodeoxygenation of bio-oil model compounds over Pt/HBEA. ACS Catal 6:1292–1307

    Article  CAS  Google Scholar 

  31. Zanuttini MS, Lago CD, Gross MS, Peralta MA, Querini CA (2017) Hydrodeoxygenation of anisole with Pt catalysts. Ind Eng Chem Res 56:6419–6431

    Article  CAS  Google Scholar 

  32. Hong YK, Lee DW, Eom HJ, Lee KY (2014) The catalytic activity of Pd/WOx/γ-Al2O3 for hydrodeoxygenation of guaiacol. Appl Catal B 150:438–445

    Article  Google Scholar 

  33. Lu MH, Zhu J, Li MS, Shan YH, He MY, Song CS (2016) TiO2-modified Pd/SiO2 for catalytic hydrodeoxygenation of guaiacol. Energy Fuels 30:6671–6676

    Article  Google Scholar 

  34. Luo ZC, Zheng ZX, Wang YC, Sun G, Jiang H, Zhao C (2016) Hydrothermally stable Ru/HZSM-5-catalyzed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water. Green Chem 18:5845–5858

    Article  CAS  Google Scholar 

  35. Xu GY, Guo JH, Qu YC, Zhang Y, Fu Y, Guo QX (2016) Selective hydrodeoxygenation of lignin-derived phenols to alkyl cyclohexanols over a Ru-solid base bifunctional catalyst. Green Chem 18:5510–5517

    Article  CAS  Google Scholar 

  36. Nelson NC, Wang ZR, Naik P, Manzano JS, Pruskiab M, Slowing II (2017) Phosphate modified ceria as a Brønsted acidic/redox multifunctional catalyst. J Mater Chem A 5:4455–4466

    Article  CAS  Google Scholar 

  37. Yang YX, Ochoa-Hernándeza C, Pizarroa P, O’shea VAP, Coronado JM, Serrano DP (2016) Ce-promoted Ni/SBA-15 catalysts for anisole hydrotreating under mild conditions. Appl Catal B 197:206–213

    Article  CAS  Google Scholar 

  38. Olcese R, Bettahar MM, Malaman B, Ghanbaja J, Tibavizco L, Petitjean D, Dufour A (2013) Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon). Appl Catal B 129:528–538

    Article  CAS  Google Scholar 

  39. Ng YC, Jei CY, Shamsuddin M (2009) Titanosilicate ETS-10 derived from rice husk ash. Microporous Mesoporous Mater 122:195–200

    Article  CAS  Google Scholar 

  40. Turta NA, De Luca P, Bilba N, Nagy JB, Nastro A (2008) Synthesis of titanosilicate ETS-10 in presence of cetyltrimethylammonium bromide. Microporous Mesoporous Mater 112:425–431

    Article  CAS  Google Scholar 

  41. Noh SH, Kim SD, Chung YJ, Park JW, Moon DK, Hayhurst DT, Kim WJ (2006) The effects of (Na + K)/Na molar ratio and kinetic studies on the rapid crystallization of a large pored titanium silicate, ETS-10 using cost efficient titanium oxysulfate, TiOSO 4 under stirring. Microporous Mesoporous Mater 88:197–204

    Article  CAS  Google Scholar 

  42. Lv L, Lee FY, Zhou J, Su F, Zhao XS (2006) XPS study on microporous titanosilicate ETS-10 upon acid treatment. Microporous Mesoporous Mater 96:270–275

    Article  CAS  Google Scholar 

  43. Lv L, Tsoi G, Zhao XS (2004) Uptake equilibria and mechanisms of heavy metal ions on microporous titanosilicate ETS-10. Ind Eng Chem Res 43:7900–7906

    Article  Google Scholar 

  44. Sankar G, Bell RG, Thomas JM (1996) Determination of the structure of distorted TiO6 units in the titanosilicate ETS-10 by a combination of X-ray absorption spectroscopy and computer modeling. J Phys Chem 100:449–452

    Article  CAS  Google Scholar 

  45. Shi M, Lin HCC, Kuznicki TM, Hashisho Z, Kuznicki SM (2010) Separation of a binary mixture of ethylene and ethane by adsorption on Na-ETS-10. Chem Eng Sci 65:3494–3498

    Article  CAS  Google Scholar 

  46. Chowdhury T, Shi M, Hashisho Z, Sawada JA, Kuznicki SM (2012) Regeneration of Na-ETS-10 using microwave and conductive heating. Chem Eng Sci 75:282–288

    Article  CAS  Google Scholar 

  47. Surolia PK, Tayade RJ, Jasra RV (2010) Photocatalytic degradation of nitrobenzene in an aqueous system by transition-metal-exchanged ETS-10 zeolites. Ind Eng Chem Res 49:3961–3966

    Article  CAS  Google Scholar 

  48. Akata B, Yilmaz B, Sacco A Jr (2008) Titanosilicate ETS-10 as a Lewis acid catalyst in the Meerwein–Ponndorf–Verley (MPV) reaction. J Porous Mater 15:351–357

    Article  CAS  Google Scholar 

  49. Krisnandi YK, Lachowski EE, Howe RF (2006) Effects of ion exchange on the structure of ETS-10. Chem Mater 18:928–933

    Article  CAS  Google Scholar 

  50. Li J, Shen BJ, Guo QX, Zhang WC, Wen GM, Tian R, Zhang ZH (2011) Preparation of the surface Ti, Al rich ETS-10 and modification of its pore structure and acidity by desilication and realumination. Microporous Mesoporous Mater 145:224–230

    Article  CAS  Google Scholar 

  51. Pavel CC, Schmidt W (2006) Generation of hierarchical pore systems in the titanosilicate ETS-10 by hydrogen peroxide treatment under microwave irradiation. Chem Commun 8:882–884

    Article  Google Scholar 

  52. Ni XJ, Xiang M, Fu WQ, Ma YL, Zhu PY, Wang WC, He MY, Yang KQ, Xiong J, Tang TD (2016) Direct synthesis of mesoporous zeolite ETS-10 and Ni-ETS-10 with good catalytic performance in the Knoevenagel reaction. J Porous Mater 23:423–429

    Article  CAS  Google Scholar 

  53. Zanuttini MS, Costa BOD, Querini CA, Peralta MA (2014) Hydrodeoxygenation of m-cresol with Pt supported over mild acid materials. Appl Catal A 482:352–361

    Article  CAS  Google Scholar 

  54. Wang Y, Wu J, Wang S (2013) Hydrodeoxygenation of bio-oil over Pt-based supported catalysts: importance of mesopores and acidity of the support to compounds with different oxygen contents. RSC Adv 3:12635–12640

    Article  CAS  Google Scholar 

  55. Zhu XL, Lobban LL, Mallinson RG, Resasco DE (2011) Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. J Catal 281:21–29

    Article  CAS  Google Scholar 

  56. Fu WQ, Zhang L, Wu DF, Yu QY, Tang T, Tang TD (2016) Mesoporous zeolite ZSM-5 supported Ni2P catalysts with high activity in the hydrogenation of phenanthrene and 4, 6-dimethyldibenzothiophene. Ind Eng Chem Res 55:7085–7095

    Article  CAS  Google Scholar 

  57. Zheng X, Fu WQ, Xiong J, Xi JC, Ni XJ, Tang TD (2016) Zeolite Beta nanoparticles assembled Cu catalysts with superior catalytic performances in the synthesis of thioesters by cross-coupling of aldehydes and disulfides. Catal Today 264:152–157

    Article  CAS  Google Scholar 

  58. Badoga S, Mouli KC, Soni KK, Dalai AK, Adjaye J (2012) Beneficial influence of EDTA on the structure and catalytic properties of sulfided NiMo/SBA-15 catalysts for hydrotreating of light gas oil. Appl Catal B 125:67–84

    Article  CAS  Google Scholar 

  59. Vosoughi V, Badoga S, Dalai AK, Abatzoglou N (2016) Effect of pretreatment on physicochemical properties and performance of multiwalled carbon nanotube supported cobalt catalyst for Fischer–Tropsch Synthesis. Ind Eng Chem Res 55:6049–6059

    Article  CAS  Google Scholar 

  60. Bagnasco G, Turco M, Busca G, Armaroli T, Nastro A, Luca PD (2003) Characterization of the structural and gas adsorption properties of ETS-10 molecular sieve. Adsorpt Sci Technol 21:683–696

    Article  CAS  Google Scholar 

  61. Xiang M, Ni XJ, Yi XF, Zheng AM, Wang WC, He MY, Xiong J, Liu TY, Ma YL, Zhu PY, Zheng X, Tang TD (2015) Preparation of mesoporous zeolite ETS-10 catalysts for high-yield synthesis of α, β-epoxy ketones. ChemCatChem 7:521–525

    Article  CAS  Google Scholar 

  62. Sahoo SK, Ray SS, Singh ID (2004) Structural characterization of coke on spent hydroprocessing catalysts used for processing of vacuum gas oils. Appl Catal A 278:83–91

    Article  CAS  Google Scholar 

  63. Al-Sakkari EG, El-Sheltawy ST, Attia NK, Mostafa SR (2017) Kinetic study of soybean oil methanolysis using cement Kiln dust as a heterogeneous catalyst for biodiesel production. Appl Catal B 206:146–157

    Article  CAS  Google Scholar 

  64. Sharma M, Wanchoo RK, Toor AP (2014) Amberlyst 15 catalyzed esterification of nonanoic acid with 1-propanol: kinetics, modeling, and comparison of its reaction kinetics with lower alcohols. Ind Eng Chem Res 53:2167–2174

    Article  CAS  Google Scholar 

  65. Fu WQ, Zhang L, Wu DF, Xiang M, Zhuo Q, Huang K, Tao ZD, Tang TT (2015) Mesoporous zeolite-supported metal sulfide catalysts with high activities in the deep hydrogenation of phenanthrene. J Catal 330:423–433

    Article  CAS  Google Scholar 

  66. Wu GQ, Wang YQ, Wang LN, Feng WP, Shi HN, Lin Y, Zhang T, Jin X, Wang SH, Wu XX, Yao PX (2013) Epoxidation of propylene with H2O2 catalyzed by supported TS-1 catalyst in a fixed-bed reactor: experiments and kinetics. Chem Eng J 215–216:306–314

    Article  Google Scholar 

  67. Bui VN, Laurenti D, Afanasiev P, Geantet C (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity. Appl Catal B 101:239–245

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 21878048 and 21676055.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Dongfang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, M., Wu, D. Highly selective catalytic conversion of lignin-derived phenolic compounds to cycloalkanes over a hierarchically structured zeolite catalyst. J Mater Sci 54, 2940–2959 (2019). https://doi.org/10.1007/s10853-018-3057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3057-y

Keywords

Navigation