Skip to main content
Log in

Preparation of Ce0.5Zr0.5O2–Al2O3 with high-temperature sintering resistance and its supported Pd-only three-way catalyst

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, three Ce0.5Zr0.5O2–Al2O3 composites were synthesized using co-precipitation method with different precursor mixing ways. Differences in structural, textural, reduction properties and catalytic performance, in combination with the aging behaviors of the supports and catalysts, were systematically explored. For CZA4, Al(NO3)3·9H2O was mixed with Ce(NO3)3·6H2O and ZrOCO3 separately before being precipitated; it could inhibit the phase separation and crystalline growth as well as exhibit resistance against sintering. Besides, CZA4 exhibited the higher surface Ce3+ species and Ce surface content, which was more beneficial to improve the redox performance. In addition, the as-prepared Pd/CZA4 and Pd/CZA4a also presented superior redox performance and Pd dispersion. What is more, the increase of Pd–Ce interface may be caused by the high Ce content on the surface, consequently, enhancing reduction in Pd–Ce interaction and dispersion of precious metal. Due to a series of properties after aging for CZA4a, thus the Pd–CZA4a revealed good TWCs performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zou ZQ, Meng M, Zha YQ (2009) The effect of dopant Cu, Fe, Ni or La on the structures and properties of mesoporous Co–Ce–O compound catalysts. J Alloy Compd 470:96–106

    Article  CAS  Google Scholar 

  2. He H, Dai HX, Ng LH, Wong KW, Au CT (2002) Pd-, Pt-, and Rh-loaded Ce0.6Zr0.35Y0.05O2 three-way catalysts: an investigation on performance and redox properties. J Catal 206:1–13

    Article  CAS  Google Scholar 

  3. Kašpar J, Fornasiero P, Hickey N (2003) Automotive catalytic converters: current status and some perspectives. Catal Today 77:419–449

    Article  Google Scholar 

  4. Papavasiliou A, Tsetsekou A, Matsouka V, Konsolakis M, Yentekakis IV (2010) An investigation of the role of Zr and La dopants into Ce1−x−yZrxLayOδ enriched γ-Al2O3 TWC washcoats. Appl Catal A gen 382:73–84

    Article  CAS  Google Scholar 

  5. Chen HR, Ye ZQ, Cui XZ, Shi JL, Yan DS (2011) A novel mesostructured alumina-ceria-zirconia tri-component nanocomposite with high thermal stability and its three-way catalysis. Micropor Mesopor Mater 143:368–374

    Article  CAS  Google Scholar 

  6. Martínez-Arias A, Fernández-García M, Iglesias-Juez A, Hungría AB, Anderson JA, Conesa JC, Soria J (2001) New Pd/CexZr1−xO2/Al2O3 three-way catalysts prepared by microemulsion: part 2. In situ analysis of CO oxidation and NO reduction under stoichiometric CO + NO + O2. Appl Catal B Environ 31:51–60

    Article  Google Scholar 

  7. Holles JH, Switzer MA, Davis RJ (2000) Influence of ceria and lanthana promoters on the kinetics of NO and N2O reduction by CO over alumina-supported palladium and rhodium. J Catal 190:247–260

    Article  CAS  Google Scholar 

  8. Mamontov E, Brezny R, Koranne M, Egami T (2003) Nanoscale heterogeneities and oxygen storage capacity of Ce0.5Zr0.5O2. J Phys Chem B 107:13007–13014

    Article  CAS  Google Scholar 

  9. Alikin Evgeny A, Vedyagin Aleksey A (2016) High temperature interaction of rhodium with oxygen storage in three-way catalysts. Top Catal 59:1033–1038

    Article  CAS  Google Scholar 

  10. Devaiah D, Reddy LH, Park SE, Reddy BM (2018) Ceria-zirconia mixed oxides: synthetic methods and applications. Catal Rev 60:177–277

    Article  CAS  Google Scholar 

  11. Yue BH, Zhou RX, Zheng XM, Lu WC (2009) Remarkable improvement of yttrium on the activity and thermal stability of methane combustion over Pd/Ce-Zr/Al2O3 catalyst. Mater Chem Phys 114:722–727

    Article  CAS  Google Scholar 

  12. Vedyagin Aleksey A, Volodin Alexander M, Kenzhin Roman M, Stoyanovskii Vladimir O, Rogov Vladimir A, Medvedev Dmitrii A, Mishakov Ilya V (2017) Characterization and study on the thermal aging behavior of palladium-alumina catalysts. J Therm Anal Calorim 130:1865–1874

    Article  CAS  Google Scholar 

  13. Wang J, Wen J, Shen MQ (2008) Effect of interaction between Ce0.7Zr0.3O2 and Al2O3 on structural characteristics, thermal stability, and oxygen storage capacity. J Phys Chem C 112:5113–5122

    Article  CAS  Google Scholar 

  14. Reddy BM, Saikia P, Bharali P (2008) Highly dispersed CexZr1-xO2 nano-oxides over alumina, silica and titania supports for catalytic applications, catal surv. Asia. 12:214–228

    CAS  Google Scholar 

  15. Di Monte R, Fornasiero P, Kašpar J, Graziani M, Gatica JM, Bernal S, Gómez-Herrero A (2000) Stabilisation of nanostructured Ce0.2Zr0.8O2 solid solution by impregnation on Al2O3: a suitable method for the production of thermally stable oxygen storage/release promoters for three-way catalysts. Chem Commun 21:2167–2168

    Article  Google Scholar 

  16. Kašpar J, Fornasiero P (2003) Nanostructured materials for advanced automotive depollution catalysts. J Solid State Chem 171:19–29

    Article  Google Scholar 

  17. Kozlov AI, Kim DH, Yezerets A, Andersen P, Kung HH, Kung MC (2002) Effect of preparation method and redox treatment on the reducibility and structure of supported ceria-zirconia mixed oxide. J Catal 209:417–426

    Article  CAS  Google Scholar 

  18. Morikawa A, Suzuki T, Kanazawa T, Kikuta K, Suda A, Shinjo H (2008) A new concept in high performance ceria-zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier. Appl Catal B Environ 78:210–221

    Article  CAS  Google Scholar 

  19. Huang F, Zheng Y, Li ZH, Xiao YH, Zheng Y, Cai GH, Wei KM (2011) Synthesis of highly dispersed ceria-zirconia supported on ordered mesoporous alumina. Chem Commun 47:5247–5249

    Article  CAS  Google Scholar 

  20. Zhao B, Yang CQ, Wang QY, Li GF, Zhou RX (2010) Influence of thermal treatment on catalytic performance of Pd/(Ce, Zr)Ox–Al2O3 three-way catalysts. J Alloy Compd 494:340–346

    Article  CAS  Google Scholar 

  21. Wei ZL, Li HM, Zhang XY, Yan SH, Lv Z, Chen YQ, Gong MC (2008) Preparation and property investigation of CeO2–ZrO2–Al2O3 oxygen-storage compounds. J Alloy Compd 455:322–326

    Article  CAS  Google Scholar 

  22. Weng XL, Zhang JY, Wu ZB, Liu Y, Wang HQ, Darr JA (2011) Continuous syntheses of highly dispersed composite nanocatalysts via simultaneous co-precipitation in supercritical water. Appl Catal B Environ 103:453–461

    Article  CAS  Google Scholar 

  23. Lan L, Chen SH, Cao Y, Gong MC, Chen YQ (2015) New insights into the structure of a CeO2-ZrO2-Al2O3 composite and its influence on the performance of the supported Pd-only three-way catalyst. Catal Sci Technol 5:4488–4500

    Article  CAS  Google Scholar 

  24. Lan L, Li HM, Chen SH, Chen YQ (2017) Preparation of CeO2–ZrO2–Al2O3 composite with layered structure for improved Pd-only three-way catalyst. J Mater Sci 52:9615–9629. https://doi.org/10.1007/s10853-017-1168-5

    Article  CAS  Google Scholar 

  25. Jia Y, Hotta YJ, Sato K, Watari KJ (2006) Homogeneous ZrO2–Al2O3 composite prepared by nano-ZrO2 particle multilayer-coated Al2O3 particles. J Am Ceram Soc 89:1103–1106

    Article  CAS  Google Scholar 

  26. Wang YS, He C, Hockey BJ, Lacey PI, Hsu SM (1995) Wear transitions in monolithic alumina and zirconia-alumina composites. Wear 181–183:156–164

    Article  Google Scholar 

  27. Piras A, Colussi S, Trovarelli A, Sergo V, Llorca J, Psaro R, Sordelli L (2005) Structural and morphological investigation of ceria-promoted Al2O3 under severe reducing/oxidizing conditions. J Phys Chem B 109:11110–11118

    Article  CAS  Google Scholar 

  28. Boullosa-Eiras S, Vanhaecke E, Zhao TJ, Chen D, Holmen A (2011) Raman spectroscopy and X-ray diffraction study of the phase transformation of ZrO2–Al2O3 and CeO2–Al2O3 nanocomposites. Catal Today 166:10–17

    Article  CAS  Google Scholar 

  29. Matsumoto S (2004) Recent advances in automobile exhaust catalysts. Catal Today 90:183–190

    Article  CAS  Google Scholar 

  30. Martínez-Arias A, Fernández-García M, Hungría AB, Iglesias-Juez A, Duncan K, Smith R, Anderson JA, Conesa JC, Soria J (2001) Effect of thermal sintering on light-off performance of Pd/(Ce, Zr)Ox/Al2O3 three-way catalysts: model gas and engine tests. J Catal 204:238–248

    Article  Google Scholar 

  31. Lin SY, Yang LY, Yang X, Zhou RX (2014) Redox behavior of active PdOx species on (Ce, Zr)xO2–Al2O3 mixed oxides and its influence on the three-way catalytic performance. Chem Eng J 247:42–49

    Article  CAS  Google Scholar 

  32. Gandhi HS, Graham GW, Mccabe RW (2003) Automotive exhaust catalysis. J Catal 216:433–442

    Article  CAS  Google Scholar 

  33. Wang JQ, Shen MQ, An Y, Wang J (2008) Ce–Zr–Sr mixed oxide prepared by the reversed microemulsion method for improved Pd-only three-way catalysts. Catal Commun 10:103–107

    Article  Google Scholar 

  34. Wang QY, Li ZG, Zhao B, Li GF, Zhou RX (2011) Effect of synthesis method on the properties of ceria-zirconia modified alumina and the catalytic performance of its supported Pd-only three-way catalyst. J Mol Catal A Chem 344:132–137

    Article  CAS  Google Scholar 

  35. Xu LJ, Chen WP, Xiao JL (2002) Palladium catalysed regioselective arylation of electron-rich olefins by aryl halides. J Mol Catal A Chem 187:189–193

    Article  CAS  Google Scholar 

  36. Alifanti M, Baps B, Blangenois N, Naud J, Grange P, Delmon B (2003) Characterization of CeO2–ZrO2 mixed oxides. Comparison of the citrate and sol-gel preparation methods. Chem Mater 15:395–403

    Article  CAS  Google Scholar 

  37. Rodriguez JA, Wang X, Liu G, Hanson JC, Hrbek J, Peden CHF, Iglesias-Juez A, Fernández-García M (2005) Physical and chemical properties of Ce1−xZrxO2 nanoparticles and Ce1−xZrxO2 (111) surfaces: synchrotron-based studies. J Mol Catal A Chem 228:11–19

    Article  CAS  Google Scholar 

  38. Di Monte R, Fornasiero P, Desinan S, Kašpar J, Gatica JM, Calvino JJ, Fonda E (2004) Thermal stabilization of CexZr1-xO2 oxygen storage promoters by addition of Al2O3: effect of thermal aging on textural, structural, and morphological properties. Chem Mater 16:4273–4285

    Article  Google Scholar 

  39. Li GR, Li W, Zhang MH, Tao KY (2004) Characterization and catalytic application of homogeneous nano-composite oxides ZrO2–Al2O3. Catal Today 93–95:595–601

    Article  Google Scholar 

  40. Yu Q, Yao XJ, Zhang HL, Gao F, Dong L (2012) Effect of ZrO2 addition method on the activity of Al2O3-supported CuO for NO reduction with CO: impregnation versus coprecipitation. Appl Catal A Gen 423–424:42–51

    Article  Google Scholar 

  41. Chary KVR, Kumar CP, Rao PVR, Rao VV (2004) Dispersion and reactivity of V2O5 catalysts supported on Al2O3-ZrO2. Catal Commun 5:479–484

    Article  CAS  Google Scholar 

  42. Chuang CC, Hsiang HI, Hwang JS, Wang TS (2009) Synthesis and characterization of Al2O3–Ce0.5Zr0.5O2 powders prepared by chemical co-precipitation method. J Alloy Compd 470:387–392

    Article  CAS  Google Scholar 

  43. Yao MH, Baird RJ, Kunz FW, Hoost TE (1997) An XRD and TEM investigation of the structure of alumina-supported ceria–zirconia. J Catal 166:67–74

    Article  CAS  Google Scholar 

  44. Huang WZ, Yang JL, Wang CJ, Zou BL, Meng XS, Wang Y, Cao XQ, Wang Z (2012) Effects of Zr/Ce molar ratio and water content on thermal stability and structure of ZrO2–CeO2 mixed oxides prepared via sol-gel process. Mater Res Bull 47:2349–2356

    Article  CAS  Google Scholar 

  45. Postole G, Chowdhury B, Karmakar B, Pinki K, Banerji J, Auroux A (2010) Knoevenagel condensation reaction over acid-base bifunctional nanocrystalline CexZr1−xO2 solid solutions. J Catal 269:110–121

    Article  CAS  Google Scholar 

  46. Li GF, Wang QY, Zhao B, Shen MQ, Zhou RX (2011) Effect of iron doping into CeO2–ZrO2 on the properties and catalytic behaviour of Pd-only three-way catalyst for automotive emission control. J Hazard Mater 186:911–920

    Article  CAS  Google Scholar 

  47. Vidal H, Bernal S, Kašpar J, Pijolat M, Perrichon V, Blanco G, Pintado JM, Baker RT, Colon G, Fally F (1999) Influence of high temperature treatments under net oxidizing and reducing conditions on the oxygen storage and buffering properties of a Ce0.68Zr0.32O2 mixed oxide. Catal Today 54:93–100

    Article  CAS  Google Scholar 

  48. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520

    Article  CAS  Google Scholar 

  49. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219

    Article  CAS  Google Scholar 

  50. Sanchez-Valente J, Bokhimi X, Hernandez F (2003) physicochemical and catalytic properties of sol–gel aluminas aged under hydrothermal conditions. Langmuir 19:3583–3588

    Article  CAS  Google Scholar 

  51. Hori CE, Permana H, Ng KYS, Brenner A, More K, Rahmoeller KM, Belton D (1998) Thermal stability of oxygen storage properties in a mixed CeO2–ZrO2 system. Appl Catal B Environ 16:105–117

    Article  CAS  Google Scholar 

  52. Fan J, Weng D, Wu XD, Wu XD, Ran R (2008) Modification of CeO2-ZrO2 mixed oxides by coprecipitated/impregnated Sr: effect on the microstructure and oxygen storage capacity. J Catal 258:177–186

    Article  CAS  Google Scholar 

  53. Hu Z, Wan C, Lui YK, Dettling J, Steger JJ (1996) Design of a novel Pd three-way catalyst: integration of catalytic functions in three dimensions. Catal Today 30:83–89

    Article  CAS  Google Scholar 

  54. Raju V, Jaenicke S, Chuah GK (2009) Effect of hydrothermal treatment and silica on thermal stability and oxygen storage capacity of ceria-zirconia. Appl Catal B Environ 91:92–100

    Article  CAS  Google Scholar 

  55. Shen MQ, Yang M, Wang J, Wen J, Zhao MW, Wang WL (2009) Pd/Support Interface-Promoted Pd–Ce0.7Zr0.3O2–Al2O3 Automobile Three-Way Catalysts: studying the Dynamic Oxygen Storage Capacity and CO, C3H8, and NO Conversion. J Phys Chem C 11:3212–3221

    Article  Google Scholar 

  56. Hinokuma S, Fujii H, Okamoto M, Ikeue K, Machida M (2010) Metallic Pd nanoparticles formed by Pd–O–Ce interaction: a reason for sintering-induced activation for CO oxidation. Chem Mater 22:6183–6190

    Article  CAS  Google Scholar 

  57. Acerbi N, Golunski S, Tsang SC, Daly H, Hardacre C, Smith R, Collier P (2012) Promotion of ceria catalysts by precious metals: changes in nature of the interaction under reducing and oxidizing conditions. J Phys Chem C 116:13569–13583

    Article  CAS  Google Scholar 

  58. Fan J, Wu XD, Wu XD, Liang Q, Ran R, Weng D (2008) Thermal ageing of Pt on low-surface-area CeO2–ZrO2–La2O3 mixed oxides: effect on the OSC performance. Appl Catal B Environ 81:38–48

    Article  CAS  Google Scholar 

  59. Guo Y, Lu GZ, Zhang ZG, Zhang SH, Qi Y, Liu Y (2007) Preparation of CexZr1-xO2 (x = 0.75, 0.62) solid solution and its application in Pd-only three-way catalysts. Catal Today 126:296–302

    Article  CAS  Google Scholar 

  60. Li GF, Zhao B, Wang QY, Zhou RX (2010) The effect of Ni on the structure and catalytic behavior of model Pd/Ce0.67Zr0.33O2 three-way catalyst before and after aging. Appl Catal B Environ 97:41–48

    Article  CAS  Google Scholar 

  61. Shan WJ, Feng ZC, Li ZL, Zhang J, Shen WJ, Li C (2004) Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition-precipitation, coprecipitation, and complexation–combustion methods. J Catal 228:206–217

    Article  CAS  Google Scholar 

  62. Chen GD, Chou WT, Yeh CT (1983) The sorption of hydrogen on palladium in a flow system. Appl Catal 8:389–397

    Article  CAS  Google Scholar 

  63. Mendez CM, Olivero H, Damiani DE, Volpe MA (2008) On the role of Pd ß-hydride in the reduction of nitrate over Pd based catalyst. Appl Catal B Environ. 84:156–161

    Article  CAS  Google Scholar 

  64. Wan J, Ran R, Wu XD, Cao YD, Li M, Weng D, Huang K (2015) Re-dispersion of Pd on Ce0.5 Zr0.5O2 upon cooling in the presence of oxygen. Catal Today 253:51–56

    Article  CAS  Google Scholar 

  65. Kamiuchi N, Haneda M, Ozawa M (2015) Propene oxidation over palladium catalysts supported on zirconium rich ceria–zirconia. Catal Today 241:100–106

    Article  CAS  Google Scholar 

  66. Martínez-Arias A, Hungría AB, Fernández-García M, Iglesias-Juez A, Anderson JA, Conesa JC (2004) Light-off behaviour of PdO/γ-Al2O3 catalysts for stoichiometric CO-O2 and CO-O2-NO reactions: a combined catalytic activity-in situ DRIFTS study. J Catal 221:85–92

    Article  Google Scholar 

  67. Weng XL, Perston B, Wang XZ, Abrahams I, Lin T, Yang SF, Evans JRG, Morgan DJ, Carley AF, Bowker M, Knowles JC, Rehman I, Darr JA (2009) Synthesis and characterization of doped nano-sized ceria–zirconia solid solutions. Appl Catal B Environ 90:405–415

    Article  CAS  Google Scholar 

  68. Li HM, Lan L, Chen SH, Liu DY, Wang W, Gong MC, Chen YQ (2016) Preparation of CeO2-ZrO2-Al2O3 with a composite precipitant and its supported Pd-only three-way catalyst. Acta Phys Chim Sin 32:1734–1746

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by National Key Research and Development Program of China (Grant No. 2016YFC0204901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Jiao or Yaoqiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Deng, J., Zhao, M. et al. Preparation of Ce0.5Zr0.5O2–Al2O3 with high-temperature sintering resistance and its supported Pd-only three-way catalyst. J Mater Sci 54, 2796–2813 (2019). https://doi.org/10.1007/s10853-018-3048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3048-z

Keywords

Navigation