Skip to main content
Log in

In situ synthesis of energetic metal–organic frameworks [Cd5(Mtta)9]n film exhibiting excellent ignition capability

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Energetic thin films have been widely used in the field of microscale energy-demanding systems. In this work, a novel energetic metal–organic frameworks [Cd5(Mtta)9]n film is fabricated on the copper substrate through an in situ synthesis method for the first time. A 5-methyl tetrazole/copper complex is deposited to modify the copper substrate through an electrochemical-assisted strategy. The [Cd5(Mtta)9]n film is then integrated on the surface of modified copper substrate by an in situ reaction of acetonitrile with sodium azide and cadmium nitrate. The morphological, structural and compositional information of the [Cd5(Mtta)9]n film is characterized by field emission scanning electron microscopy, X-ray diffraction and infrared spectrum. The thermostabilities of the [Cd5(Mtta)9]n film are studied by differential scanning calorimetry and thermogravimetry. In addition, the preliminary laser ignition test is conducted by using pulsed Nd:YAG laser. The results show that the as-prepared [Cd5(Mtta)9]n film possesses a rod-like topography. The flame height and ignition duration of [Cd5(Mtta)9]n film reach 9.0 mm and 220 µs, respectively, revealing that [Cd5(Mtta)9]n film is an excellent ignition material. This research opens up a new avenue for the preparation of novel energetic films, which provides potential applications on microelectromechanical systems to achieve functional nanoenergetics-on-a-chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shen J, Qiao Z, Wang J, Zhang K, Li R, Nie F, Yang G (2014) Pressure loss and compensation in the combustion process of Al–CuO nanoenergetics on a microheater chip. Combust Flame 161:2975–2981

    Article  CAS  Google Scholar 

  2. Xu D, Yang Y, Cheng H, Li YY, Zhang K (2012) Integration of nano-Al with Co3O4 nanorods to realize high-exothermic core–shell nanoenergetic materials on a silicon substrate. Combust Flame 159:2202–2209

    Article  CAS  Google Scholar 

  3. Zhang K, Rossi C, Petrantoni M, Mauran N (2008) A nano initiator realized by integrating Al/CuO-based nanoenergetic materials with a Au/Pt/Cr microheater. J Microelectromech Syst 17:832–836

    Article  CAS  Google Scholar 

  4. Ju Y, Maruta K (2011) Microscale combustion: technology development and fundamental research. Energy Combust Sci 37:669–715

    Article  CAS  Google Scholar 

  5. Walther DC, Ahn J (2011) Advances and challenges in the development of power-generation systems at small scales. Energy Combust Sci 37:583–610

    Article  CAS  Google Scholar 

  6. Meeks K, Pantoya ML, Apblett C (2014) Deposition and characterization of energetic thin films. J Chin Ceram Soc 161:1117–1124

    CAS  Google Scholar 

  7. Smith DK, Cano J, Pantoya ML, Kappagantula K (2017) Thermal and combustion properties of energetic thin films with carbon nanotubes. J Thermophys Heat Transf 31:1–5

    Article  Google Scholar 

  8. Zhang W, Yin B, Shen R, Ye J, Thomas JA, Chao Y (2013) Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film. ACS Appl Mater Interfaces 5:239–242

    Article  Google Scholar 

  9. Bahrami M, Taton G, Conédéra V, Salvagnac L, Tenailleau C, Alphonse P, Rossi C (2014) Magnetron sputtered Al–CuO nanolaminates: effect of stoichiometry and layers thickness on energy release and burning rate. Propellants Explos Pyrotech 39:365–373

    Article  CAS  Google Scholar 

  10. Xu J, Tai Y, Ru C, Dai J, Ye Y, Shen R, Zhu P (2017) Tuning the ignition performance of a micro-chip initiator by integrating various Al/MoO3 RMFs on a semiconductor bridge. Appl Mater Interfaces 9:5580–5589

    Article  CAS  Google Scholar 

  11. Zhang K, Rossi C, Alphonse P, Tenailleau C, Cayez S, Chane-Ching JY (2009) Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate. Appl Phys A Mater Sci Process 94:957–962

    Article  CAS  Google Scholar 

  12. Qiao Z, Xu D, Nie F, Yang G, Zhang K (2012) Controlled facile synthesis, growth mechanism, and exothermic properties of large-area Co3O4 nanowalls and nanowires on silicon substrates. J Appl Phys 112:746–749

    Google Scholar 

  13. Qiu X, Tang R, Liu R, Huang H, Guo S, Yu H (2012) A micro initiator realized by reactive Ni/Al nanolaminates. J Mater Sci Mater Electron 23:2140–2144

    Article  CAS  Google Scholar 

  14. Milosavljević M, Stojanović N, Peruško D, Timotijević B, Toprek D, Kovač J, Dražič G, Jeynes C (2012) Ion irradiation induced Al–Ti interaction in nano-scaled Al/Ti multilayers. Appl Surf Sci 258:2043–2046

    Article  Google Scholar 

  15. Xiang Z, Torabi M, Jian L, Shen R, Zhang K (2014) Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl Mater Interfaces 6:3058–3060

    Article  Google Scholar 

  16. Zhang Q, Shreeve JM (2014) Metal-organic frameworks as high explosives: a new concept for energetic materials. Angew Chem Int Ed 53:2540–2542

    Article  CAS  Google Scholar 

  17. Feng Y, Liu X, Duan L, Yang Q, Wei Q, Xie G, Chen S, Yang X, Gao S (2015) In situ synthesized 3D heterometallic metal-organic framework (MOF) as a high-energy-density material shows high heat of detonation, good thermostability and insensitivity. Dalton Trans 44:2333–2339

    Article  CAS  Google Scholar 

  18. Feng Y, Bi YG, Zhao W, Zhang T (2016) Anionic Metal-organic frameworks lead the way to eco-friendly high-energy-density materials. J Mater Chem A 4:7596–7600

    Article  CAS  Google Scholar 

  19. Zhang S, Yang Q, Liu X, Qu X, Wei Q, Xie G, Chen S, Gao S (2016) High-energy metal–organic frameworks (HE-MOFs): synthesis, structure and energetic performance. Coord Chem Rev 307:292–312

    Article  CAS  Google Scholar 

  20. Bushuyev OS, Brown P, Maiti A, Gee RH, Peterson GR, Weeks BL, Hope-Weeks LJ (2012) Ionic polymers as a new structural motif for high-energy-density materials. J Am Chem Soc 134:1422–1425

    Article  CAS  Google Scholar 

  21. Liu X, Gao W, Sun P, Su Z, Chen S, Wei Q, Xie G, Gao S (2015) Environmentally friendly high-energy MOFs: crystal structures, thermostability, insensitivity and remarkable detonation performances. Green Chem 17:831–836

    Article  CAS  Google Scholar 

  22. Shen C, Liu Y, Zhu ZQ, Xu YG, Lu M (2017) Self-assembly of silver(i)-based high-energy metal-organic frameworks (HE-MOFs) at ambient temperature and pressure: synthesis, structure and superior explosive performance. Chem Commun 53:7489–7492

    Article  CAS  Google Scholar 

  23. Bushuyev OS, Peterson GR, Brown P, Maiti A, Gee RH, Weeks BL, Hope-Weeks LJ (2013) Metal–organic frameworks (MOFs) as safer, structurally reinforced energetics. Chem Eur J 19:1706–1711

    Article  CAS  Google Scholar 

  24. Yang Q, Song X, Ge J, Zhao G, Zhang W, Xie G, Chen S, Gao S, Khim Zh (2016) A 2D Nickel-based energetic MOFs incorporating 3,5-diamino-1,2,4-triazole and malonic acid: synthesis, crystal structure and thermochemical study. J Chem Thermodyn 92:132–138

    Article  CAS  Google Scholar 

  25. Li S, Wang Y, Qi C, Zhao X, Zhang J, Zhang S, Pang S (2013) 3D energetic metal-organic frameworks: synthesis and properties of high energy materials. Angew Chem Int Ed 52:14031–14035

    Article  CAS  Google Scholar 

  26. Liu Q, Jin B, Zhang Q, Shang Y, Guo Z, Tan B, Peng R (2016) Nitrogen-rich energetic metal–organic framework: synthesis, structure, properties, and thermal behaviors of Pb(II) complex based on N, N-Bis(1H-tetrazole-5-yl)-amine. Materials 9:681

    Article  Google Scholar 

  27. Guo Z, Wu Y, Deng C, Yang G, Zhang J, Sun Z, Ma H, Gao C, An Z (2016) Structural modulation from 1D chain to 3D framework: improved thermostability, insensitivity, and energies of two nitrogen-rich energetic coordination polymers. Inorg Chem 55:11064–11071

    Article  CAS  Google Scholar 

  28. Tang Y, He C, Mitchell LA, Parrish DA, Shreeve JM (2016) Potassium 4,4′-Bis(dinitromethyl)-3,3′-azofurazanate: a highly energetic 3D metal–organic framework as a promising primary explosive. Angew Chem 55:5655–5657

    Article  Google Scholar 

  29. Kwon HT, Jeong HK (2013) In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J Am Chem Soc 135:10763–10768

    Article  CAS  Google Scholar 

  30. Abbasi AR, Akhbari K, Morsali A (2012) Dense coating of surface mounted CuBTC metal–organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason Sonochem 19:846–852

    Article  CAS  Google Scholar 

  31. Schoedel A, Scherb C, Bein T (2010) Oriented nanoscale films of metal–organic frameworks By room-temperature gel-layer synthesis. Angew Chem Int Ed 49:7225–7228

    Article  CAS  Google Scholar 

  32. Jiang D, Burrows A, Xiong Y, Edler K (2013) Facile synthesis of crack-free metal–organic framework films on alumina by a dip-coating route in the presence of polyethylenimine. J Mater Chem A 1:5497–5500

    Article  CAS  Google Scholar 

  33. Bétard A, Fischer RA (2012) Metal–organic framework thin films: from fundamentals to applications. Chem Rev 112:1055–1083

    Article  Google Scholar 

  34. Liu W, Yu C, Zhang W, Xie Q, Gao Y, Zheng Z, Chen H (2017) Design and fabrication of energetic metal–organic framework [Cu(ntz)]n films with high energy-density and stability. Dalton Trans 46:13360–13363

    Article  CAS  Google Scholar 

  35. Abrishami F, Ebrahimikia M, Rafiee F (2015) Synthesis of 5-substituted 1 H-tetrazoles using a recyclable heterogeneous nanonickel ferrite catalyst. Appl Organomet Chem 29:730–735

    Article  CAS  Google Scholar 

  36. Clarina T, Rama V (2017) [3 + 2] cycloaddition promoted by zinc oxide nanoparticles anchored on reduced graphene oxide using green solvent. Synth Commun 48:1–13

    Google Scholar 

  37. Xu Y, Liu W, Li D, Chen H, Lu M (2017) In situ synthesized 3D metal–organic frameworks (MOFs) constructed from transition metal cations and tetrazole derivatives: a family of insensitive energetic materials. Dalton Trans 46:11046–11052

    Article  CAS  Google Scholar 

  38. Rama V, Kanagaraj K, Pitchumani K (2011) Syntheses of 5-substituted 1H-tetrazoles catalyzed by reusable CoY zeolite. Cheminform 76:9090–9095

    CAS  Google Scholar 

  39. Thottempudi V, Gao H, Shreeve JNM (2011) Trinitromethyl-substituted 5-Nitro- or 3-Azo-1,2,4-triazoles: synthesis, characterization, and energetic properties. J Am Chem Soc 133:6464–6471

    Article  CAS  Google Scholar 

  40. Qu X, Zhang S, Yang Q, Su Z, Wei Q, Xie G, Chen S (2015) Silver(I)-based energetic coordination polymers: synthesis, structure and energy performance. New J Chem 39:7849–7857

    Article  CAS  Google Scholar 

  41. Anniyappan M, Talawar MB, Gore GM, Venugopalan S, Gandhe BR (2006) Synthesis, characterization and thermolysis of 1,1-diamino-2,2-dinitroethylene (FOX-7) and its salts. J Hazard Mater 137:812–819

    Article  CAS  Google Scholar 

  42. Yang C, Hu Y, Shen R, Ye Y, Wang S, Hua T (2014) Fabrication and performance characterization of Al/Ni multilayer energetic films. Adv Mater Res 114:459–464

    CAS  Google Scholar 

  43. Zheng Z, Zhang W, Yu C, Zheng G, Ma K, Qin Z, Ye J, Chao Y (2018) RSC Adv 8:2552–2560

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant 51576101, 51676100) and the Fundamental Research Funds for the Central Universities (Grant 30915012101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenchao Zhang or Houhe Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6077 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yu, C., Zhang, W. et al. In situ synthesis of energetic metal–organic frameworks [Cd5(Mtta)9]n film exhibiting excellent ignition capability. J Mater Sci 54, 2908–2917 (2019). https://doi.org/10.1007/s10853-018-3044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3044-3

Keywords

Navigation