Skip to main content
Log in

Synthesis and formation mechanism of porous silicon carbide stacked by nanoparticles from precipitated silica/glucose composites

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous silicon carbide (SiC) with a Brunauer–Emmett–Teller specific surface area of 75 m2 g−1 and a pore volume of 0.37 cm3 g−1 was synthesized through a facile process using industrial precipitated silica and glucose. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses indicated that the SiC was stacked by β-SiC nanoparticles with size ranging from 60 to 150 nm, and its morphology was similar to that of precipitated silica. Further analysis showed that the formation mechanism of porous SiC was different from the general carbothermal reduction method. The proposed mechanism indicated that precipitated silica is a porous particle stacked by amorphous primary silica nanoparticles. When the temperature was higher than its softening point during the carbothermal reduction reaction, the silica nanoparticles softened and began to change from solid phase to liquid phase with a certain viscosity. Then, the pyrolytic carbon of glucose in contact with silica nanoparticles was diffused into the liquid phase and reacted in situ to form SiC. Precipitated silica served as a template, and SiC inherited its morphology and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Morkoc H, Strite S, Gao GB, Lin ME, Sverdlov B, Burns M (1994) Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J Appl Phys 76:1363–1398

    Article  CAS  Google Scholar 

  2. Borchardt L, Hoffmann C, Oschatz M, Mammitzsch L, Petasch U, Herrmann M, Kaskel S (2012) Preparation and application of cellular and nanoporous carbides. Chem Soc Rev 41:5053–5067

    Article  CAS  Google Scholar 

  3. Presser R, Nickel KG (2008) Silica on silicon carbide. Crit Rev Solid State 33:1–99

    Article  CAS  Google Scholar 

  4. Moene R, Makkee M, Moulijn JA (1998) High surface area silicon carbide as catalyst support characterization and stability. Appl Catal A Gen 167:321–330

    Article  CAS  Google Scholar 

  5. Ledoux MJ, Pham-Huu C (2001) Silicon carbide: a novel catalyst support for heterogeneous catalysis. Cattech 5:226–246

    Article  CAS  Google Scholar 

  6. Duong-Viet C, Ba H, El-Berrichi Z, Nhut JM, Ledoux MJ, Liu Y, Pham-Huu C (2016) Silicon carbide foam as a porous support platform for catalytic applications. New J Chem 40:4285–4299

    Article  CAS  Google Scholar 

  7. Shcherban ND (2017) Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide. J Ind Eng Chem 50:15–28

    Article  CAS  Google Scholar 

  8. Shor JS, Grimberg I, Weiss BZ, Kurtz AD (1993) Direct observation of porous SiC formed by anodization in HF. Appl Phys Lett 62:2836–2838

    Article  CAS  Google Scholar 

  9. Sorokin LM, Savkina NS, Shuman VB, Lebedev AA, Mosina GN, Hutchison G (2002) Features of the structure of a porous silicon carbide layer obtained by electrochemical etching of a 6H-SiC substrate. Tech Phys Lett 28:935–938

    Article  CAS  Google Scholar 

  10. Ledoux MJ, Hantzer S, Huu CP, Guille J, Desaneaux MP (1988) New synthesis and uses of high-specific-surface SiC as a catalytic support that is chemically inert and has high thermal resistance. J Catal 114:176–185

    Article  CAS  Google Scholar 

  11. Ledoux MJ, Pham-Huu C (1992) High specific surface area carbides of silicon and transition metals for catalysis. Catal Today 15:263–284

    Article  CAS  Google Scholar 

  12. Keller N, Pham-Huu C, Roy S, Ledoux MJ, Estournes C, Guille J (1999) Influence of the preparation conditions on the synthesis of high surface area SiC for use as a heterogeneous catalyst support. J Mater Sci 34:3189–3202. https://doi.org/10.1023/A:1004681806843

    Article  CAS  Google Scholar 

  13. Hoffmann C, Reinhardt B, Enke D, Kaskel S (2014) Inverse silicon carbide replica of porous glasses. Microporous Mesoporous Mater 184:1–6

    Article  CAS  Google Scholar 

  14. Wang K, Yao J, Wang H, Cheng YB (2008) Effect of seeding on formation of silicon carbide nanostructures from mesoporous silica–carbon nanocomposites. Nanotechnology 19:175605

    Article  Google Scholar 

  15. Krawiec P, Weidenthaler C, Kaskel S (2004) SiC/MCM-48 and SiC/SBA-15 nanocomposite materials. Chem Mater 16:2869–2880

    Article  CAS  Google Scholar 

  16. Kong Y, Zhong Y, Shen X, Gu L, Cui S, Yang M (2013) Synthesis of monolithic mesoporous silicon carbide from resorcinol–formaldehyde/silica composites. Mater Lett 99:108–110

    Article  CAS  Google Scholar 

  17. Zhao B, Zhang H, Tao H et al (2011) Low temperature synthesis of mesoporous silicon carbide via magnesiothermic reduction. Mater Lett 65:1552–1555

    Article  CAS  Google Scholar 

  18. Saeedifar Z, Nourbakhsh AA, Kalbasi RJ, Karamian E (2013) Low-temperature magnesiothermic synthesis of mesoporous silicon carbide from an MCM-48/polyacrylamide nanocomposite precursor. J Mater Sci Technol 29:255–260

    Article  CAS  Google Scholar 

  19. Krawiec P, Geiger D, Kaskel S (2006) Ordered mesoporous silicon carbide (OM-SiC) via polymer precursor nanocasting. Chem Commun 23:2469–2470

    Article  Google Scholar 

  20. Yuan X, Lü J, Yan X, Hu L, Xue Q (2011) Preparation of ordered mesoporous silicon carbide monoliths via preceramic polymer nanocasting. Microporous Mesoporous Mater 142:754–758

    Article  CAS  Google Scholar 

  21. Shi YF, Meng Y, Chen DH, Cheng SJ, Chen P, Yang HF (2006) Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability. Adv Funct Mater 16:561–567

    Article  CAS  Google Scholar 

  22. Kim YW, Kim SH, Song IH, Kim HD, Park CB (2005) Fabrication of open-cell, microcellular silicon carbide ceramics by carbothermal reduction. J Am Ceram Soc 88:2949–2951

    Article  CAS  Google Scholar 

  23. Kim YW, Eom JH, Wang C, Park CB (2008) Processing of porous silicon carbide ceramics from carbon-filled polysiloxane by extrusion and carbothermal reduction. J Am Ceram Soc 91:1361–1364

    Article  CAS  Google Scholar 

  24. Yang Z, Xia Y, Mokaya R (2004) High surface area silicon carbide whiskers and nanotubes nanocast using mesoporous silica. Chem Mater 16:3877–3884

    Article  CAS  Google Scholar 

  25. Shcherban ND, Filonenko SM, Sergiienko SA, Yaremov PS, Ilyin VG (2015) Structure and porosity of silicon carbide produced by matrix method. Theor Exp Chem 51:320–326

    Article  CAS  Google Scholar 

  26. Shcherban ND, Filonenko SM, Sergiienko SA, Yaremov PS, Skoryk MA, Ilyin VG, Murzin DY (2018) Morphological features of porous silicon carbide obtained via a carbothermal method. Int J Appl Ceram Technol. 15:36–41. https://doi.org/10.1111/ijac.12757

    Article  CAS  Google Scholar 

  27. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  28. Vix-Guterl C, Ehrburger P (1997) Effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation. Carbon 35:1587–1592

    Article  CAS  Google Scholar 

  29. Vix-Guterl C, McEnaney B, Ehrburger P (1999) SiC material produced by carbothermal reduction of a freeze gel silica-carbon artefact. J Eur Ceram Soc 19:427–432

    Article  CAS  Google Scholar 

  30. Li XK, Liu L, Zhang YX, Shen SD, Ge S, Ling LC (2001) Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels. Carbon 39:159–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hubei Province of China (Grant Nos. 2014CFB788), the Key Technologies R&D Program of Hubei Province of China (Grant Nos. 2014BAA102) and Major Technological Innovation Special Project of Hubei Province of China (2016ACA160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Wang, H., Zhu, C. et al. Synthesis and formation mechanism of porous silicon carbide stacked by nanoparticles from precipitated silica/glucose composites. J Mater Sci 54, 2787–2795 (2019). https://doi.org/10.1007/s10853-018-3039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3039-0

Keywords

Navigation