Skip to main content
Log in

Electroactive phase nucleation and isothermal crystallization kinetics in ionic liquid-functionalized ZnS nanoparticle-ingrained P(VDF-HFP) copolymer nanocomposites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP))-based copolymer nanocomposites are prepared by blending with hydrophobic ionic liquid-functionalized ZnS nanoparticles. Different characterization techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and differential scanning calorimetry (DSC) are employed to investigate the effect of the nano-additives to the conformational changes of copolymer chain segments before and after the melt crystallization. Isothermal crystallization kinetics of the nanocomposites are studied using DSC at different crystallization temperatures. Analysis of the experimental data reveals that the functionalized nanoparticles in nanocomposites gradually retard the crystallization rate through strong dipole–dipole interaction, but accelerates the nucleation rate, providing a large number of heterogeneous nucleation sites. However, at higher loading, they substantially restrict the crystal growth rate, leading to the formation of a large number of imperfect crystallites and a consecutive reduction in overall crystallinity. Different nucleation parameters such as initial laminar thickness, fold surface free energy and the work of chain folding during isothermal crystallization were evaluated from the analysis of the crystallization kinetics data using Avrami, Hoffman–Week and Lauritzen–Hoffman theories, also supports the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  2. Sukwisute P, Muensit N, Soontaranon S, Rugmai S (2013) Micropower energy harvesting using poly(vinylidene fluoride hexafluoropropylene). Appl Phys Lett 103(6):063905. https://doi.org/10.1063/1.4818339

    Article  CAS  Google Scholar 

  3. Wang Y, Zhou X, Chen Q, Chu B, Zhang Q (2010) Recent development of high energy density polymers for dielectric capacitors. IEEE Trans Dielectr Electr Insul 17(4):1036–1042. https://doi.org/10.1109/tdei.2010.5539672

    Article  CAS  Google Scholar 

  4. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785):334–336. https://doi.org/10.1126/science.1127798

    Article  CAS  Google Scholar 

  5. Khanchaitit P, Han K, Gadinski MR, Li Q, Wang Q (2013) Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat Commun 4:2845. https://doi.org/10.1038/ncomms3845

    Article  CAS  Google Scholar 

  6. Ribeiro C, Costa CM, Correia DM, Nunes-Pereira J, Oliveira J, Martins P, Gonçalves R, Cardoso VF, Lanceros-Méndez S (2018) Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Protoc 13(4):681–704. https://doi.org/10.1038/nprot.2017.157

    Article  CAS  Google Scholar 

  7. Piorkowska E, Galeski A (2013) Overall crystallization kinetics. In: Handbook of polymer crystallization. John Wiley & Sons, Inc., pp 215–236. https://doi.org/10.1002/9781118541838.ch7

    Chapter  Google Scholar 

  8. Okada KN, Hikosaka M (2013) Polymer nucleation. In: Handbook of polymer crystallization. John Wiley & Sons, Inc., pp 125–164. https://doi.org/10.1002/9781118541838.ch4

    Chapter  Google Scholar 

  9. Biswas S, Dutta B, Bhattacharya S (2017) Isothermal crystallization kinetics as a probe of the preferential electroactive phase nucleation in silver-poly(vinylidene fluoride) nanocomposites: dependence on nanoparticle size and concentration. Eur Polym J 86:1–16. https://doi.org/10.1016/j.eurpolymj.2016.11.013

    Article  CAS  Google Scholar 

  10. Biswas S, Bhattacharya S (2017) Effect of Ag nanoparticle embedment on electroactive phase nucleation of PVDF and PVDF-HFP under non-isothermal condition: a comparative study. Thermochim Acta 649:69–81. https://doi.org/10.1016/j.tca.2017.01.009

    Article  CAS  Google Scholar 

  11. Ramasundaram S, Yoon S, Kim KJ, Park C (2008) Preferential formation of electroactive crystalline phases in poly(vinylidene fluoride)/organically modified silicate nanocomposites. J Polym Sci Part B: Polym Phys 46(20):2173–2187. https://doi.org/10.1002/polb.21550

    Article  CAS  Google Scholar 

  12. Balantseva E, Berlier G, Camino B, Lessio M, Ferrari AM (2014) Surface properties of ZnS nanoparticles: a combined DFT and experimental study. J Phys Chem C 118(41):23853–23862. https://doi.org/10.1021/jp507963y

    Article  CAS  Google Scholar 

  13. Martins P, Caparros C, Gonçalves R, Martins PM, Benelmekki M, Botelho G, Lanceros-Mendez S (2012) Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C 116(29):15790–15794. https://doi.org/10.1021/jp3038768

    Article  CAS  Google Scholar 

  14. Bahader A, Gui H, Li Y, Xu P, Ding Y (2015) Crystallization kinetics of PVDF filled with multi wall carbon nanotubes modified by amphiphilic ionic liquid. Macromol Res 23(3):273–283. https://doi.org/10.1007/s13233-015-3039-8

    Article  CAS  Google Scholar 

  15. Atanassov A, Kostov G, Kiryakova D, Borisova-Koleva L (2012) Properties of clay nanocomposites based on poly (vinylidene fluoride-co-hexafluoropropylene). J Thermoplast Compos Mater 27:126–141. https://doi.org/10.1177/0892705712443249

    Article  CAS  Google Scholar 

  16. Kelarakis A, Hayrapetyan S, Ansari S, Fang J, Estevez L, Giannelis EP (2010) Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): structure and properties. Polymer 51(2):469–474. https://doi.org/10.1016/j.polymer.2009.11.057

    Article  CAS  Google Scholar 

  17. Wang B, Yin M, Lv R, Na B, Zhu Y, Liu H (2015) Critical composition of the β form of poly(vinylidene fluoride) in miscible crystalline/crystalline blends. J Phys Chem B 119(44):14303–14308. https://doi.org/10.1021/acs.jpcb.5b07964

    Article  CAS  Google Scholar 

  18. Biswas S, Dutta B, Bhattacharya S (2015) Correlation between nucleation, phase transition and dynamic melt-crystallization kinetics in PAni/PVDF blends. RSC Adv 5(91):74486–74498. https://doi.org/10.1039/C5RA15989J

    Article  CAS  Google Scholar 

  19. Roy A, Dutta B, Bhattacharya S (2016) Electroactive phase nucleation and non-isothermal crystallization kinetics study in [DEMM][TFSI] ionic liquid incorporated P(VDF-HFP) co-polymer membranes. J Mater Sci 51(17):7814–7830. https://doi.org/10.1007/s10853-016-9978-4

    Article  CAS  Google Scholar 

  20. Xing C, Zhao M, Zhao L, You J, Cao X, Li Y (2013) Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym Chem 4(24):5726–5734. https://doi.org/10.1039/c3py00466j

    Article  CAS  Google Scholar 

  21. Mejri R, Dias JC, Lopes AC, Bebes Hentati S, Silva MM, Botelho G, Mão de Ferro A, Esperança JMSS, Maceiras A, Laza JM, Vilas JL, León LM, Lanceros-Mendez S (2015) Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blends. Eur Polym J 71:304–313. https://doi.org/10.1016/j.eurpolymj.2015.07.058

    Article  CAS  Google Scholar 

  22. Mejri R, Dias JC, Hentati SB, Martins MS, Costa CM, Lanceros-Mendez S (2016) Effect of anion type in the performance of ionic liquid/poly(vinylidene fluoride) electromechanical actuators. J Non-Cryst Solids 453:8–15. https://doi.org/10.1016/j.jnoncrysol.2016.09.014

    Article  CAS  Google Scholar 

  23. Dang Z-M, Wang H-Y, Xu H-P (2006) Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 89(11):112902. https://doi.org/10.1063/1.2338529

    Article  CAS  Google Scholar 

  24. Prabakaran K, Mohanty S, Nayak SK (2014) Influence of surface modified TiO2 nanoparticles on dielectric properties of PVdF–HFP nanocomposites. J Mater Sci Mater Electron 25(10):4590–4602. https://doi.org/10.1007/s10854-014-2209-3

    Article  CAS  Google Scholar 

  25. Puguan JMC, Chung W-J, Kim H (2016) Ion-conductive and transparent PVdF-HFP/silane-functionalized ZrO2 nanocomposite electrolyte for electrochromic applications. Electrochim Acta 196:236–244. https://doi.org/10.1016/j.electacta.2016.02.172

    Article  CAS  Google Scholar 

  26. Xie L, Huang X, Yang K, Li S, Jiang P (2014) “Grafting to” route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications. J Mater Chem A 2(15):5244–5251. https://doi.org/10.1039/C3TA15156E

    Article  CAS  Google Scholar 

  27. Dutta B, Deb D, Bhattacharya S (2018) Ionic liquid-SnO2 nanoparticle hybrid electrolytes for secondary charge storage devices: physicochemical and electrochemical studies. Int J Hydrog Energy 43(8):4081–4089. https://doi.org/10.1016/j.ijhydene.2017.08.065

    Article  CAS  Google Scholar 

  28. Deb D, Bhattacharya S (2017) Role of different nanoparticulate cores on the thermal, mechanical and electrochemical cycling behaviour of nanoscale hybrid ionic fluids. Electrochim Acta 245:438–447. https://doi.org/10.1016/j.electacta.2017.05.169

    Article  CAS  Google Scholar 

  29. Deb D, Bhattacharya S (2017) Influence of ionic-liquid-tethered Al2O3 nanoparticle on the nonisothermal cold crystallization in ionic-liquid-based nanofluids. J Phys Chem C 121(12):6962–6976. https://doi.org/10.1021/acs.jpcc.6b11845

    Article  CAS  Google Scholar 

  30. Wahab R, Ansari SG, Kim Y-S, Dhage MS, Seo HK, Song M, Shin H-S (2009) Effect of annealing on the conversion of ZnS to ZnO nanoparticles synthesized by the sol-gel method using zinc acetate and thiourea. Met Mater Int 15(3):453. https://doi.org/10.1007/s12540-009-0453-5

    Article  CAS  Google Scholar 

  31. Davis GT, McKinney JE, Broadhurst MG, Roth SC (1978) Electric-field-induced phase changes in poly(vinylidene fluoride). J Appl Phys 49(10):4998–5002. https://doi.org/10.1063/1.324446

    Article  CAS  Google Scholar 

  32. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7(25):15382–15389. https://doi.org/10.1039/C7RA01267E

    Article  CAS  Google Scholar 

  33. Esterly DM, Love BJ (2003) Phase transformation to β-poly(vinylidene fluoride) by milling. J Polym Sci, Part B: Polym Phys 42(1):91–97. https://doi.org/10.1002/polb.10613

    Article  CAS  Google Scholar 

  34. Jovanovski V, Orel B, Ješe R, Šurca Vuk A, Mali G, Hočevar SB, Grdadolnik J, Stathatos E, Lianos P (2005) Novel polysilsesquioxane−I-/I3- ionic electrolyte for dye-sensitized photoelectrochemical cells. J Phys Chem B 109(30):14387–14395. https://doi.org/10.1021/jp051270c

    Article  CAS  Google Scholar 

  35. Chandra Babu DB, Buddhudu S (2014) Emission spectra of Tb3+: Zn2SiO4 and Eu3+: Zn2SiO4 sol–gel powder phosphors. J Spectrosc Dyn 4:1–8

    Google Scholar 

  36. Chen X, Zhao J, Zhang J, Qiu L, Xu D, Zhang H, Han X, Sun B, Fu G, Zhang Y, Yan F (2012) Bis-imidazolium based poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J Mater Chem 22(34):18018–18024. https://doi.org/10.1039/C2JM33273F

    Article  CAS  Google Scholar 

  37. Leones R, Costa CM, Machado AV, Esperança JMSS, Silva MM, Lanceros-Méndez S (2013) Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N1 1 1 2(OH)][NTf2] ionic liquid for energy storage applications. Solid State Ionics 253:143–150. https://doi.org/10.1016/j.ssi.2013.09.042

    Article  CAS  Google Scholar 

  38. Tashiro K, Itoh Y, Kobayashi M, Tadokoro H (1985) Polarized Raman spectra and LO–TO splitting of poly(vinylidene fluoride) crystal form I. Macromolecules 18(12):2600–2606. https://doi.org/10.1021/ma00154a041

    Article  CAS  Google Scholar 

  39. Kobayashi M, Tashiro K, Tadokoro H (1975) Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8(2):158–171. https://doi.org/10.1021/ma60044a013

    Article  CAS  Google Scholar 

  40. Park YJ, Kang YS, Park C (2005) Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions. Eur Polym J 41(5):1002–1012. https://doi.org/10.1016/j.eurpolymj.2004.11.022

    Article  CAS  Google Scholar 

  41. Lopes AC, Costa CM, Tavares CJ, Neves IC, Lanceros-Mendez S (2011) Nucleation of the electroactive γ phase and enhancement of the optical transparency in low filler content poly(vinylidene)/clay nanocomposites. J Phys Chem C 115(37):18076–18082. https://doi.org/10.1021/jp204513w

    Article  CAS  Google Scholar 

  42. Barrau S, Ferri A, Da Costa A, Defebvin J, Leroy S, Desfeux R, Lefebvre J-M (2018) Nanoscale investigations of α- and γ-crystal phases in PVDF-based nanocomposites. ACS Appl Mater Interf 10(15):13092–13099. https://doi.org/10.1021/acsami.8b02172

    Article  CAS  Google Scholar 

  43. Kressler J, Schafer R, Thomann R (1998) Imaging of semicrystalline polymers and polymer blends by FT-IR microspectroscopy. Appl Spectrosc 52(10):1269–1273

    Article  CAS  Google Scholar 

  44. Wang H, Yang X, Zhao Y, Yan C, Wang S, Yang H, Wang X, Schultz JM (2017) Preparation of gamma-PVDF with controlled orientation and insight into phase transformation. Polymer 123:282–289. https://doi.org/10.1016/j.polymer.2017.07.004

    Article  CAS  Google Scholar 

  45. Kim SH, Ahn SH, Hirai T (2003) Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer 44(19):5625–5634. https://doi.org/10.1016/S0032-3861(03)00623-2

    Article  CAS  Google Scholar 

  46. Kuo MC, Huang JC, Chen M (2006) Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone). Mater Chem Phys 99(2–3):258–268. https://doi.org/10.1016/j.matchemphys.2005.10.021

    Article  CAS  Google Scholar 

  47. Marega C, Marigo A (2003) Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride). Eur Polym J 39(8):1713–1720

    Article  CAS  Google Scholar 

  48. Heck B, Strobl G, Grasruck M (2003) Characteristic variations in the effect of diluents on polymer crystallization and melting observed for a sample of poly(ethylene-co-octene). Eur Phys J E 11(2):117–130

    Article  CAS  Google Scholar 

  49. Qiu Z, Ikehara T, Nishi T (2003) Melting behaviour of poly(butylene succinate) in miscible blends with poly(ethylene oxide). Polymer 44(10):3095–3099. https://doi.org/10.1016/S0032-3861(03)00216-7

    Article  CAS  Google Scholar 

  50. Avrami M (1940) Kinetics of phase change. II Transformation—time relations for random distribution of nuclei. J Chem Phys 8(2):212–224. https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  51. Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7(12):1103–1112. https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  52. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems. Polym Test 26(2):222–231. https://doi.org/10.1016/j.polymertesting.2006.10.005

    Article  CAS  Google Scholar 

  53. Duran H, Steinhart M, Butt H-J, Floudas G (2011) From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. Nano Lett 11(4):1671–1675. https://doi.org/10.1021/nl200153c

    Article  CAS  Google Scholar 

  54. Shalu Chaurasia SK, Singh RK (2014) Crystallization behaviour of a polymeric membrane based on the polymer PVdF-HFP and the ionic liquid BMIMBF4. RSC Adv 4(92):50914–50924. https://doi.org/10.1039/C4RA07085B

    Article  CAS  Google Scholar 

  55. Martins P, Costa CM, Ferreira JCC, Lanceros-Mendez S (2012) Correlation between crystallization kinetics and electroactive polymer phase nucleation in ferrite/poly(vinylidene fluoride) magnetoelectric nanocomposites. J Phys Chem B 116(2):794–801. https://doi.org/10.1021/jp210493t

    Article  CAS  Google Scholar 

  56. Sencadas V, Costa CM, Gómez Ribelles JL, Lanceros-Mendez S (2010) Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the Avrami equation. J Mater Sci 45(5):1328–1335. https://doi.org/10.1007/s10853-009-4086-3

    Article  CAS  Google Scholar 

  57. Gupta S, Yuan X, Chung TCM, Cakmak M, Weiss RA (2014) Isothermal and non-isothermal crystallization kinetics of hydroxyl-functionalized polypropylene. Polymer 55(3):924–935. https://doi.org/10.1016/j.polymer.2013.12.063

    Article  CAS  Google Scholar 

  58. Vyazovkin S (2015) Isoconversional methodology. In: Vyazovkin S (ed) Isoconversional kinetics of thermally stimulated processes. Springer International Publishing, Cham, pp 27–62. https://doi.org/10.1007/978-3-319-14175-6_2

    Google Scholar 

  59. Dillon DR, Tenneti KK, Li CY, Ko FK, Sics I, Hsiao BS (2006) On the structure and morphology of polyvinylidene fluoride–nanoclay nanocomposites. Polymer 47(5):1678–1688. https://doi.org/10.1016/j.polymer.2006.01.015

    Article  CAS  Google Scholar 

  60. Hoffman JD, Miller RL (1997) Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38(13):3151–3212. https://doi.org/10.1016/S0032-3861(97)00071-2

    Article  CAS  Google Scholar 

  61. Hoffman JD, Weeks JJ (1962) Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene. J Chem Phys 37(8):1723–1741. https://doi.org/10.1063/1.1733363

    Article  CAS  Google Scholar 

  62. Xu J, Srinivas S, Marand H, Agarwal P (1998) Equilibrium melting temperature and undercooling dependence of the spherulitic growth rate of isotactic polypropylene. Macromolecules 31(23):8230–8242. https://doi.org/10.1021/ma980748q

    Article  CAS  Google Scholar 

  63. Khoshkava V, Ghasemi H, Kamal MR (2015) Effect of cellulose nanocrystals (CNC) on isothermal crystallization kinetics of polypropylene. Thermochim Acta 608:30–39. https://doi.org/10.1016/j.tca.2015.04.007

    Article  CAS  Google Scholar 

  64. Hirschinger J, Schaefer D, Spiess HW, Lovinger AJ (1991) Chain dynamics in the crystalline α-phase of poly(vinylidene fluoride) by two-dimensional exchange deuteron NMR. Macromolecules 24(9):2428–2433. https://doi.org/10.1021/ma00009a046

    Article  CAS  Google Scholar 

  65. Hoffman JD (1983) Regime III crystallization in melt-crystallized polymers: the variable cluster model of chain folding. Polymer 24(1):3–26. https://doi.org/10.1016/0032-3861(83)90074-5

    Article  CAS  Google Scholar 

  66. Zhong Z, Guo Q (1999) Crystallization kinetics of crosslinkable polymer complexes of novolac resin and poly(ethylene oxide). J Polym Sci Part B: Polym Phys 37(19):2726–2736. https://doi.org/10.1002/(SICI)1099-0488(19991001)37:19%3c2726:AID-POLB2%3e3.0.CO;2-V

    Article  CAS  Google Scholar 

  67. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707. https://doi.org/10.1021/ja01619a008

    Article  CAS  Google Scholar 

  68. Mancarella C, Martuscelli E (1977) Crystallization kinetics of poly(vinylidene fluoride). Polymer 18(12):1240–1242. https://doi.org/10.1016/0032-3861(77)90286-5

    Article  CAS  Google Scholar 

  69. Hoffman J, Davis GT, Lauritzen J, Jr. (1976) The Rate of Crystallization of Linear Polymers with Chain Folding. In: Hannay NB (ed) Treatise on Solid State Chemistry. Springer US, pp 497–614. https://doi.org/10.1007/978-1-4684-2664-9_7

    Chapter  Google Scholar 

  70. Lauritzen JI (1973) Effect of a finite substrate length upon polymer crystal lamellar growth rate. J Appl Phys 44(10):4353–4359. https://doi.org/10.1063/1.1661963

    Article  CAS  Google Scholar 

Download references

Acknowledgements

BD thankfully acknowledges the SERB-DST for the financial support under the scheme SB/FT/CS-53/2014. Authors thankfully recognize the DST-FIST project of the Department of Physics, the University of Kalyani, for providing the instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhratanu Bhattacharya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, B., Deb, D. & Bhattacharya, S. Electroactive phase nucleation and isothermal crystallization kinetics in ionic liquid-functionalized ZnS nanoparticle-ingrained P(VDF-HFP) copolymer nanocomposites. J Mater Sci 54, 2990–3008 (2019). https://doi.org/10.1007/s10853-018-3027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3027-4

Keywords

Navigation